
Networks - Quantification
Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Create Random Network MatricesCreate Random Network Matrices

OVERVIEW

Questions

How to generate test matrices using NetworkX?

What is the purpose of the node degree and the degree distribution?

How can a network be quantified?

Objectives

Creating network matrices with random edges.

Quantifying network properties.

Applying networks concepts to the C. elegans neural network.

Networks

https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/02-networks_2.Rmd
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/02-networks_2.Rmd
http://127.0.0.1:7208/02-networks_2.pdf
http://127.0.0.1:7208/02-networks_2.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=nU8ossLYBc4

The Watts-Strogatz NetworkThe Watts-Strogatz Network

Network QuantificationNetwork Quantification

Introduction to Networks

Generating Test Matrices
NetworkX has a number of ways to create matrices with given specifications. We have seen in the previous lesson that e.g. zeros((5,5))
creates a matrix filled with zeroes. This speeds up the creation of a network matrix with only a few non-zero entries. Similarly, one
can start with function ones from Numpy to create a network with few zero entries.

However, to test network code we would like to be able to easily create test matrices without having to fill in the information about the
edges manually. Typically, one wants to quickly create an arbitrary number of realisations to study e.g. a distribution of network properties.

PREREQUISITES

import networkx as nx

from matplotlib.pyplot import subplots, show

PYTHON

5 × 5

https://www.youtube.com/watch?v=3MQNgrtjY-A
https://www.youtube.com/watch?v=FLF-Hz_PhFs
http://127.0.0.1:7208/01-networks_1.html

Here is a way to create matrices with randomly assigned edges using function randint.

Function from the numpy module is used to create an array or matrix filled with integers.

The first two arguments, two integer numbers, specify which integers to use. The first number is the smallest integer, the second number is
the largest integer plus one. The first two numbers work as so this function will produce numbers (N) in range specified as:

. In our case entering will produce zeroes and ones. With , all integers from 1 to 9 will be used, all with equal
probability.

The keyword argument size specifies the dimensions of the matrix. In our case we want a matrix for a specified number of
nodes. The output of the code will look different at each function call because each time you execute the code, Python will assign the zeroes
and ones randomly.

There are many ways to create network matrices with different specifications. These can be used to test null hypotheses about
experimental data. For example, one can generate networks with the same amount of nodes and edges as in an experimental network but
with random assignment of edges to test whether the observed connections are likely to be due to chance. Some biological networks seem
to have the so-called ‘small world’ property, where in spite of relatively few connections there are quick ways to get from one node to any
other node by tracing a path along combinations of edges.

There is a way to have Python return the same random numbers when using functions like by using the function (also from
the module). Reproducibility is central to coding, and functions such as this facilitate reproducibility.

The command sets the value of the ‘seed’ used to initialise the random number generator to . The choice of seed value is arbitrary.
The important thing is that specifying a value will mean the random number results are reproducible.

When we specify a starting seed value for the number generator it still produces random numbers but will produce the same set of random
numbers each time the code is executed. To test this run the following example:

from numpy.random import randint

nodes = 5

rm = randint(0, 2, size=(nodes, nodes))

print(rm)

PYTHON

[[1 0 0 1 0]

 [1 1 0 1 1]

 [1 1 1 0 1]

 [1 1 0 0 0]

 [1 0 1 1 0]]

OUTPUT

randint random

(a, b+ 1)
a <= N <= b (0, 2) (1, 10)

nodes × nodes

randint seed

random

seed(1) 1

from numpy.random import seed

seed(1)

rm1 = randint(0, 2, size=(nodes, nodes))

print(rm1)

PYTHON

https://en.wikipedia.org/wiki/Small-world_network

And repeated:

Since we set the same (arbitrary) seed for both of these function calls, both produce the same pattern of 1s and 0s. The results are identical:

Create a matrix with randomly distributed integers from 1 to 6 to simulate a group of 3 players throwing a dice 20 times.

[[1 1 0 0 1]

 [1 1 1 1 0]

 [0 1 0 1 1]

 [0 0 1 0 0]

 [0 1 0 0 1]]

OUTPUT

seed(1)

rm2 = randint(0, 2, size=(nodes, nodes))

print(rm2)

PYTHON

[[1 1 0 0 1]

 [1 1 1 1 0]

 [0 1 0 1 1]

 [0 0 1 0 0]

 [0 1 0 0 1]]

OUTPUT

rm1 == rm2

PYTHON

array([[True, True, True, True, True],

 [True, True, True, True, True],

 [True, True, True, True, True],

 [True, True, True, True, True],

 [True, True, True, True, True]])

OUTPUT

DO IT YOURSELF

n×m

Solution

NetworkX graph types
NetworkX has built-in function to produce classic graphs. For example, a Petersen graph has 10 nodes and 15 edges.

players = 3

rounds = 20

throws = randint(1, 7, size=(rounds, players))

print(throws)

PYTHON

[[5 3 5]

 [6 3 5]

 [2 2 1]

 [6 2 2]

 [6 2 2]

 [1 5 2]

 [1 1 6]

 [4 3 2]

 [1 4 6]

 [2 2 4]

 [5 1 2]

 [4 5 3]

 [5 1 6]

 [4 2 3]

 [1 5 2]

 [3 3 2]

 [1 2 4]

 [6 5 4]

 [6 2 4]

 [1 1 3]]

OUTPUT

petersen = nx.petersen_graph()

layout = nx.spectral_layout(petersen)

nx.draw(petersen, with_labels=True)

show()

PYTHON

https://en.wikipedia.org/wiki/Petersen_graph

Some stochastic graphs can also be generated simply within NetworkX. A random lobster graph is a graph which becomes a caterpillar
graph if all leaf nodes are removed.

nodes = 50

p1: Probability of adding an edge to the backbone

p2: Probability of adding an edge one level beyond backbone

p1 = 0.9

p2 = 0.5

lobster = nx.random_lobster(nodes, 0.9, 0.5)

layout = nx.spiral_layout(lobster)

nx.draw(lobster, layout, with_labels=True)

show()

PYTHON

The first argument is the number of nodes in the graph backbone, the second argument is the probability of adding an edge to this main
backbone, and the third number gives the probability of adding further edges. Try running it several times, and with different values, to see
how it changes.

Look up the NetworkX documentation, and use the tutorial to plot a Tutte graph.

DO IT YOURSELF

https://en.wikipedia.org/wiki/Tutte_graph

Solution

Node degree
Each node within a graph has a number of edges connected to it and this number is referred to as the node (or vertex) degree. For example,
consider the protein-protein interation graph generated in the previous Lesson, Exercise 1.5.

tutte = nx.tutte_graph()

layout = nx.spring_layout(tutte, seed=1)

nx.draw(tutte, layout,

 with_labels=True)

show()

PYTHON

The node representing the protein has a degree of 4 and has a degree of 2.
Furthermore the degree in directed graphs (or digraphs) can be split into the in degree which counts the number of edges pointing into the
node and out degree which counts the number of edges emanating from the node. In the graph generated for Exercise 1.5, the node with
index 0 has an out degree of 3, the node with index 0 has an out degree of 3, the node with index 3 has an in degree of 3, and the node with
index 1 has a total degree of 4, with an out degree of 2 and an in degree of 2.

adk era

from numpy import array

matrixFromArray = array([[0, 1, 0, 0],

 [0, 1, 0, 1],

 [1, 0, 1, 1],

 [1, 0, 1, 0]])

my_graph = nx.from_numpy_matrix(matrixFromArray, create_using=nx.DiGraph)

my_graphLayout = nx.spring_layout(my_graph, seed=11)

nx.draw(my_graph, my_graphLayout,

 node_size=1000,

 arrowsize=20,

 with_labels=True

)

show()

PYTHON

As we discussed in the previous lesson, an edge is set up in a network matrix in the direction (from) row (to) column. Consider the
following network matrix.

The first column tells us which edges reach the first node (node 0) from another node. Adding the numbers up we find an in degree of 3 for
node 0. If we look at the first row we can see that there are two edges originating from node 0, giving an out degree of 2.

Simple as it is, one would nevertheless like to get it done by the computer rather than by hand. In NetworkX there are specific functions to
calculate graph qualities such as node degree. To turn the array into a directed graph and get the degree of all nodes in a network
described by an adjacency matrix we can use the following code. After the matrix is set up by hand, it is converted into a NetworkX
DiGraph object - so NetworkX will parse the directions of the edges as a directed graph.

→

from numpy import array

mymatrix = array([[0, 1, 1, 0, 0],

 [1, 0, 0, 1, 1],

 [1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1],

 [1, 0, 1, 0, 0]])

print(mymatrix)

PYTHON

[[0 1 1 0 0]

 [1 0 0 1 1]

 [1 0 0 0 0]

 [0 0 0 0 1]

 [1 0 1 0 0]]

OUTPUT

The in degree is calculated, which is the sum over all columns, and the out degree is calculated, which is the sum over all rows.

The output is viewed as a list of nodes with each node followed by the in/out degree. For example, the first node (node 0) has an in degree
of 3 (edges from nodes 1, 2 and 4) and out degree 2 (edges to nodes 1 and 2). If the matrix is symmetric, the in degree and the out degree
arrays will be identical. In this case we simply refer to the degree.

This graph can also be visualised to confirm the in and out degree of each node. We have also added a few new customisation options here
in the graph, which you can find and amend using the NetworkX documentation.

mygraph = nx.from_numpy_matrix(mymatrix, create_using=nx.DiGraph)

mygraph.in_degree

PYTHON

InDegreeView({0: 3, 1: 1, 2: 2, 3: 1, 4: 2})

OUTPUT

mygraph.out_degree

PYTHON

OutDegreeView({0: 2, 1: 3, 2: 1, 3: 1, 4: 2})

OUTPUT

mygraphLayout = nx.spectral_layout(mygraph)

mygraphLabels = {

 0: 'Node 0',

 1: 'Node 1',

 2: 'Node 2',

 3: 'Node 3',

 4: 'Node 4',

}

nx.draw(mygraph, mygraphLayout,

 labels = mygraphLabels,

 node_color = 'lavender',

 node_size = 2000,

 arrowsize=25,

 arrowstyle='->')

show()

PYTHON

1. Using a random seed of 100, set up a matrix randomly distributed integers 0 and 1.

2. Turn this matrix into a NetworkX DiGraph object.

3. Calculate the in and out degrees for this graph.

DO IT YOURSELF

15 × 15

Solution

Solution

nodes = 15

seed(100)

rm_15 = randint(0, 2, size=(nodes, nodes))

print(rm_15)

PYTHON

[[0 0 1 1 1 1 0 0 0 0 0 1 0 0 0]

 [0 1 0 0 1 0 1 0 0 0 1 1 1 0 0]

 [1 0 0 1 1 1 1 1 0 0 1 1 1 1 1]

 [1 1 1 0 1 1 1 0 0 1 1 0 1 0 1]

 [1 1 0 0 1 0 0 1 1 1 0 0 0 0 0]

 [0 1 0 1 0 1 0 0 1 1 0 0 0 1 1]

 [1 1 0 0 1 1 0 0 1 0 1 0 1 0 1]

 [0 1 0 1 1 0 0 1 0 1 1 0 0 0 0]

 [0 0 1 0 1 1 0 1 0 0 0 0 0 0 1]

 [0 1 1 0 0 0 0 1 1 1 1 0 0 1 1]

 [0 0 1 0 0 0 0 1 1 0 1 0 1 0 1]

 [0 1 1 1 1 1 1 1 1 0 0 0 0 1 0]

 [1 0 1 0 0 0 1 0 0 0 1 0 1 1 0]

 [0 1 1 1 0 1 0 0 0 0 0 1 1 0 0]

 [1 0 0 0 1 0 1 0 1 1 0 0 0 1 0]]

OUTPUT

rm_15_Graph = nx.from_numpy_matrix(rm_15, create_using=nx.DiGraph)

PYTHON

Solution

Printing in-degrees

print('Index', ' In Degree')

for ind, deg in rm_15_Graph.in_degree:

 print(' ', ind, ' ', deg)

PYTHON

Index In Degree

 0 6

 1 9

 2 8

 3 6

 4 10

 5 8

 6 6

 7 7

 8 7

 9 6

 10 8

 11 4

 12 7

 13 6

 14 7

OUTPUT

Printing out-degrees

print('Index', ' Out Degree')

for ind, deg in rm_15_Graph.out_degree:

 print(' ', ind, ' ', deg)

PYTHON

Degree distribution
It is straightforward to look at the degrees of a network with only a few nodes. However, for large networks with many nodes, the degree
will be an array with as many numbers as there are nodes. This requires a more convenient way to summarise this information. An often-
used solution is to look at the degree distribution.

The degree distribution is normally presented as a histogram showing how many times a given degree was found in that network.

As an example, for a random matrix:

The degree distribution can be plotted using NetworkX and matplotlib, here plotted simply with the hist plot.

Index Out Degree

 0 5

 1 6

 2 11

 3 10

 4 6

 5 7

 6 8

 7 6

 8 5

 9 8

 10 6

 11 9

 12 6

 13 6

 14 6

OUTPUT

10 × 10

seed(4)

rm_mat = randint(0, 2, size=(10, 10))

rm_net = nx.from_numpy_matrix(rm_mat)

PYTHON

For a more complex example, we can generate a network with 100 nodes and display its degree distribution (code taken from the
NetworkX documentation).

xticks, xticklabels as to integers

degs = dict(rm_net.degree()).values()

fig, ax = subplots()

ax.hist(degs, bins=10);

ax.set_title("Degree Distribution", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16);

ax.set_xticks([d for d in degs])

ax.set_xticklabels(degs)

show()

PYTHON

nodes = 100

probab = 0.02

G = nx.gnp_random_graph(nodes, probab, seed=1)

PYTHON

https://networkx.org/documentation/networkx-2.3/auto_examples/drawing/plot_degree_histogram.html
https://networkx.org/documentation/networkx-2.3/auto_examples/drawing/plot_degree_histogram.html

from matplotlib.pyplot import axes, axis, title

import collections

degree_sequence = sorted([d for n, d in G.degree()], reverse=True) # degree sequence

degreeCount = collections.Counter(degree_sequence)

deg, cnt = zip(*degreeCount.items())

fig, ax = subplots()

ax.bar(deg, cnt, width=0.80, color="b")

title("Degree Distribution", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16)

ax.set_xticks([d for d in deg])

ax.set_xticklabels(deg);

draw graph in inset

axes([0.4, 0.4, 0.5, 0.5])

G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])

pos = nx.spring_layout(G, seed=2)

axis("off")

nx.draw_networkx_nodes(G, pos, node_size=30, node_color='r')

nx.draw_networkx_edges(G, pos);

show()

PYTHON

<networkx.classes.graph.Graph object at 0x7f1fdd386080>

(0.0, 1.0, 0.0, 1.0)

OUTPUT

This example plots the degree distribution, showing, for example, that 11 nodes in this network have no edges. You can verify that from the
overlaid graph (isolated red dots).

Note how the degree with highest probability (2) reflects the choice of edge probability of 2%.

1. Change the number of nodes to 1000 and check the maximum of the degree distribution. How does it depend on the number of
nodes?

2. The second argument in the generation of the graph gives the probability of edge creation. How do both the appearance of the
network and the degree distribution change?

DO IT YOURSELF

Solution

degree_max = probab / nodes

nodes = 1000

probab = 0.02

G = nx.gnp_random_graph(nodes, probab, seed=1)

degree_sequence = sorted([d for n, d in G.degree()], reverse=True) # degree sequence

degreeCount = collections.Counter(degree_sequence)

deg, cnt = zip(*degreeCount.items())

fig, ax = subplots()

ax.bar(deg, cnt, width=0.80, color="b")

title("Degree Histogram", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16)

ax.set_xticks([d for d in deg])

ax.set_xticklabels(deg);

draw graph in inset

axes([0.4, 0.4, 0.5, 0.5])

G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])

pos = nx.spring_layout(G, seed=2)

axis("off")

nx.draw_networkx_nodes(G, pos, node_size=30, node_color='r')

nx.draw_networkx_edges(G, pos);

show()

PYTHON

<networkx.classes.graph.Graph object at 0x7f1fdd7a33d0>

(0.0, 1.0, 0.0, 1.0)

OUTPUT

Solution

The edge probability determines how connected a graph is. The higher the probability, the more
connected. With a probability of 1, a fully connected graph is created. The most frequenc degree is
given by the above formula.

Other Graph Properties

Clustering coefficient
As an example of a more complex quantitative measure, we take the clustering coefficient. We will look at its formula and discuss extreme
cases to understand what useful information the measure is supposed to convey. We then practice the use of creating test matrices and do
calculations of clustering coefficients of the corresponding networks.

##Definition

The clustering coefficient is defined by the formula:

The clustering coefficient, here denoted by , is a number that is calculated for a single node, . For the calculation one needs to know the
degree of the node, . The degree represents the number of direct connections of the node. Nodes connected by an edge are referred to as
nearest neighbours, or simply neighbours. Therefore, the degree is also equal to the number of neighbours. Finally, is the number of edges
(connections) between the neighbours of .

The formula is derived as the number of edges between the neighbours divided by the maximally possible number of connections. The

maximal number of possible connections of neighbours is . There are elements but if we leave out self-connections it becomes

. As each edge is included twice (forward and backward) division by 2 gives the number of undirected connections.

This yields some important properties: if there is no connection between any of the neighbours, then and . If all neighbours are

maximally connected (each node connected to every other node), then and . The clustering coefficient therefore tells us

the extent to which neighbours of a node are connected among themselves. This definition is valid for undirected networks with no self-
connections.

We can use random test graphs, as we made earlier, to explore clustering coefficients in NetworkX. Here we’ll make a 10 by 10 random
graph, setting a seed so it’s reproducible.

To avoid any self-connections, we put the diagonal of the matrix equal to zero.

CALLOUT

=Cu
2e

k(k−1)

Cu u

k

e

u

k
k(k−1)

2 k × k

k × (k − 1)

e = 0 = 0Cu

e =
k(k−1)

2 = 1Cu

from numpy import fill_diagonal

seed_number = 4

nodes = 10

seed(seed_number)

rm_graph = randint(0, 2, size=(nodes, nodes))

fill_diagonal(rm_graph, 0)

myRandom = nx.from_numpy_matrix(rm_graph)

nx.draw(myRandom, node_color='y', with_labels=True)

show()

PYTHON

We can now use NetworkX to learn more about this graph. To print a list of the clustering coefficient for each node (calculated with the
above formula), we use the function .

With slightly nicer formatting:

clustering

print(nx.clustering(myRandom))

PYTHON

{0: 0.5714285714285714, 1: 0.5238095238095238, 2: 0.8, 3: 0.6666666666666666, 4: 0.8, 5: 0.6, 6: 0.809523809

OUTPUT

for ind, cc in dict(nx.clustering(myRandom)).items():

 print(ind, ' ', cc)

PYTHON

To extract the clustering coefficients from the result as a Python list:

You can also obtain the average clustering coefficient across your graph directly from NetworkX:

The number shows that in this graph there is a comparatively high (more than 50%) probability of the neighbours of a node to be connected
among themselves.

Path length
Simply put, the path length refers to the distance between two nodes in a graph, calculated as the number of edges to get from one to the
other. More specific information about a graph can be found by measures that build on the path length, such as the shortest path length,
average shortest path length, and the shortest path length from node to all reachable nodes.

For illustration, here is how we can find out the shortest path of our graph from node 0 to node 1. The output is the sequence of
nodes along this shortest path.

0 0.5714285714285714

1 0.5238095238095238

2 0.8

3 0.6666666666666666

4 0.8

5 0.6

6 0.8095238095238095

7 0.7142857142857143

8 0.6071428571428571

9 0.8095238095238095

OUTPUT

from numpy import around

clustcoeffs = list(dict(nx.clustering(myRandom)).values())

print(around(clustcoeffs, 2))

PYTHON

[0.57 0.52 0.8 0.67 0.8 0.6 0.81 0.71 0.61 0.81]

OUTPUT

print(nx.average_clustering(myRandom))

PYTHON

0.6902380952380953

OUTPUT

myRandom

print(nx.shortest_path(myRandom, source=0, target=1))

PYTHON

The shortest path from node 0 to node 1 is via node with index 2. This shows that the shortest path between these two nodes only passes
through one other node. There may be other paths of the same length, but none which are shorter. If we want to know all possible shortest
paths between a pair of nodes, we can do that too.

There are six possibilities to get from node 0 to node 1 via one intermediate node.

As a single summary quantity of a network, we can find the average shortest path length:

1. Using the matrix you created in Exercise 2.3, calculate the average shortest path length.

2. Using the same matrix, print the shortest path length between nodes 2 and 8.

[0, 2, 1]

OUTPUT

my_shortest_paths = nx.all_shortest_paths(myRandom, source=0, target=1)

for path in my_shortest_paths:

 print(path)

PYTHON

[0, 2, 1]

[0, 3, 1]

[0, 4, 1]

[0, 6, 1]

[0, 9, 1]

[0, 5, 1]

OUTPUT

print(round(nx.average_shortest_path_length(myRandom), 2))

PYTHON

1.29

OUTPUT

DO IT YOURSELF

15 × 15

Solution

Solution

Centrality
Centrality can be used to determine the most important node or nodes in a graph. In a network such as a protein-protein interaction
network, this would be the protein which interacts with most other proteins in the system. The centrality of each node in a network is
calculated as the fraction of nodes in the graph with which is connects.

print(round(nx.average_shortest_path_length(rm_15_Graph), 2))

PYTHON

1.54

OUTPUT

my_shortest_paths = nx.all_shortest_paths(rm_15_Graph, source=2, target=8)

for path in my_shortest_paths:

 print(path)

PYTHON

[2, 4, 8]

[2, 5, 8]

[2, 6, 8]

[2, 10, 8]

[2, 11, 8]

[2, 14, 8]

OUTPUT

my_centralities = nx.degree_centrality(myRandom)

for index, centr in dict(my_centralities).items():

 print(index, ' ', round(centr, 2))

PYTHON

This produces a dictionary of nodes followed by the centrality value. In this graph, node 8 is the most ‘important’ node (according to this
definition).

Analysing a biological network
Caenorhabditis elegans (C. elegans) is a nematode used as model organism to study developmental biology, and specifically neuronal
development. It is one of the simplest organisms with a nervous system, which makes it particularly suited for this research. The majority of
C. elegans individuals are hermaphrodites. The developmental trajectory of each somatic cell (in hermaphrodites 959, in males 1031) has
been identified, and is generally consistent between worms. The complete connectome (neuronal map) has been published, originally by
White, Southgate, Thomson, and Brenner in 1986, and continues to be researched. Here, we take nodes to represent neurons and edges to
represent synapses.

Getting a network matrix from Dynamic Connectome lab
In this final section we want to benefit from network information that is stored in a freely available database. There are a number of
databases that include information about interactions. In the context of biochemical reaction networks, two prominent examples are the
(KEGG database) and the (Reactome database). In the previous lesson, we have used an example from the STRING database which
contained data about protein-protein interactions (PPI). Other examples are the BioGrid Database of Protein, Genetic and Chemical
Interactions and the IntAct Molecular Interaction Database.

Some researchers also make their data freely available upon publication. In this section we are going to use some simplified data from the
Dynamic Connectome lab on the neuronal networks of C. elegans. For simplicity, these data have been edited such that only the first 50 of
the 131 neurons are included. The Python Pandas library is used to import this data. First, we import the adjacency matrix showing how
these neurons connect to each other, and a file containing the name of each neuron.

Then, we convert the adjacency matrix to the Numpy format, and the labels into a dictionary. We then save the labels (each neuron has a
name!) in the NetworkX node label format, and convert the adjacency matrix into the NetworkX format. Finally, we give the graph the layout

, and draw it.

0 0.78

1 0.78

2 0.67

3 0.44

4 0.67

5 0.56

6 0.78

7 0.78

8 0.89

9 0.78

OUTPUT

random

http://www.genome.jp/kegg/pathway.html/
http://www.reactome.org/
https://string-db.org/
https://thebiogrid.org/
https://thebiogrid.org/
https://www.ebi.ac.uk/legacy-intact/
https://www.dynamic-connectome.org/

We can examine this network similar to the way we did for our earlier, smaller networks.

For instance, we can confirm the (reduced) number of nodes.

from pandas import read_csv

neurons = read_csv('data/celegans131matrix_50.csv', header = None, dtype = "float64")

neuronNames = read_csv('data/celegans131labels_50.csv', header = None)

neurons = neurons.to_numpy()

neuronNames = neuronNames.to_dict()

neuronLabels = neuronNames[0]

neuronGraph = nx.from_numpy_matrix(neurons)

neuronLayout = nx.random_layout(neuronGraph)

nx.draw(neuronGraph, neuronLayout,

 node_size=1500,

 node_color='turquoise',

 labels = neuronLabels

)

PYTHON

neuronGraph.number_of_nodes()

PYTHON

Using the techniques we introduced above, we can interrogate various aspects of this real-world network, such as finding the node with the
greatest centrality, assess the average path length, and find out the clustering coefficients.

Exercises

1. Compute the number of edges in the above C. elegans neuron network.

2. Compute the average clustering coefficient across this network.

3. Calculate the centrality of each node.

4. Find the average shortest path length.

5. Find the shortest path length between neurons 4 and 44.

6. Plot the degree distribution of the network with inserted network graph.

Solution

Q1

50

OUTPUT

ASSIGNMENT

print('Number of Edges')

print(neuronGraph.number_of_edges())

PYTHON

Number of Edges

186

OUTPUT

Solution

Solution

Solution

print('Clustering Coefficients')

print(nx.average_clustering(neuronGraph))

PYTHON

Clustering Coefficients

0.3174194694194694

OUTPUT

print('Degree Centrality')

print(nx.degree_centrality(neuronGraph))

PYTHON

Degree Centrality

{0: 0.08163265306122448, 1: 0.14285714285714285, 2: 0.26530612244897955, 3: 0.24489795918367346, 4: 0.06

OUTPUT

print('Average shortest path length')

print(nx.average_shortest_path_length(neuronGraph))

PYTHON

Average shortest path length

2.3518367346938778

OUTPUT

Solution

print('Shortest path length between N4 and N44')

print(nx.shortest_path_length(neuronGraph, source=4, target=44))

PYTHON

Shortest path length between N4 and N44

3

OUTPUT

Solution

degree_sequence = sorted([d for n, d in neuronGraph.degree()], reverse=True) # degree sequence

degreeCount = collections.Counter(degree_sequence)

deg, cnt = zip(*degreeCount.items())

fig, ax = subplots()

ax.bar(deg, cnt, width=0.80, color="b")

title("Degree Distribution", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16)

ax.set_xticks([d for d in deg])

ax.set_xticklabels(deg);

draw graph in inset

axes([0.4, 0.4, 0.5, 0.5])

neuronGraph.subgraph(sorted(nx.connected_components(neuronGraph), key=len, reverse=True)[0]);

pos = nx.spring_layout(neuronGraph, seed=2)

axis("off")

nx.draw_networkx_nodes(neuronGraph, pos, node_size=30, node_color='r');

nx.draw_networkx_edges(neuronGraph, pos);

show()

PYTHON

(0.0, 1.0, 0.0, 1.0)

OUTPUT

The function randint creates matrices with randomly assigned integers which are represented as edges.

NetworkX can produce interesting graphs like: Petersen, lobster and caterpillar graphs.

In a symmetric matrix, the in degree and the out degree arrays are identical.

Large networks can be quantified using e.g. the degree distribution.

Some of the key graph properties include the clustering coefficient, path length, and centrality.

KEY POINTS

