
Networks - Applications
Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Networks - Part 1

Networks - Part 2

OVERVIEW

Questions

What ways are there to import data into NetworkX?

What are the common �le import error?

How to troubleshoot the import errors?

Objectives

Reviewing data import

Understanding troubleshooting of common errors in data import

Handling a bipartite network

Applying network concepts to real-world datasets

PREREQUISITES

import networkx as nx

from pandas import read_csv

from numpy import mean, fill_diagonal

from numpy.random import randint

from matplotlib.pyplot import subplots, show

PYTHON

Networks

https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/03-networks_3.Rmd
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/03-networks_3.Rmd
http://127.0.0.1:4224/03-networks_3.pdf
http://127.0.0.1:4224/03-networks_3.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
http://127.0.0.1:4224/01-networks_1.html
http://127.0.0.1:4224/02-networks_2.html

Importing data into NetworkX
In the previous lessons we have looked at the basics of NetworkX, created some networks, analysed various network properties, and
practised these techniques with the pre-prepared C. elegans dataset. If you want to use NetworkX with data of your own, you’ll need to
import your data in a compatible way. Speci�cally, you need to be able to import data from different original data formats.

CSV Format
.csv indicates a very common �le format, comma separated values. We used it in the previous lesson to import the C. elegans neuronal
network.

The network data ‘celegans131matrix_50.csv’ is simply a large adjacency matrix of 0s and 1s, with no further information. The
‘celegans131labels_50.csv’ �le contains the list of neuron names, which we used to label the nodes. We’ll have a look in more detail at how
this import works. We use Pandas functions as a simple way to import a CSV �le. (There are, of course, other ways.)

Here is the import of the data for the �rst 50 neurons.

We import the CSV network �le as before. We specify with a keyword argument that there is no header, otherwise the �rst line in the �le
will be assumed to be a header and not parsed (handled) in the same way as the rest of the data. We also specify that the adjacency
matrix is of data type int. (This does not necessarily have to be the case, see the Microbiome network below.) We then convert the
neurons dataframe to a Numpy array. The neuron_Names can be imported in a similar way. They will need to be converted from a
dataframe to a dictionary:

Dictionaries associate keys with values. You may remember we previously created a dictionary to assign labels to nodes. Here we convert
the neuron_Names dataframe into a dictionary: the neuron (node) indices are the keys and the corresponding neuron (node) names are the
values. As the function to_dict wraps the dictionary within a dictionary, we obtain the plain labels dictionary by referring to index ‘0’.

Now we can create a graph, specify a layout, and plot the network.

neurons=read_csv('data/celegans131matrix_50.csv', header=None, dtype = "int")

neurons=neurons.to_numpy()

print(len(neurons))

PYTHON

50

OUTPUT

neuron_Names = read_csv('data/celegans131labels_50.csv', header=None)

neuronNames = neuron_Names.to_dict()

neuronLabels = neuronNames[0]

print(neuronLabels)

PYTHON

{0: 'ADFL', 1: 'ADFR', 2: 'ADLL', 3: 'ADLR', 4: 'AFDL', 5: 'AFDR', 6: 'AIAL', 7: 'AIAR', 8: 'AIBR', 9: 'AINL

OUTPUT

https://en.wikipedia.org/wiki/Comma-separated_values

In this particular case, we also have other metadata that can be used for visualisation and analysis. In our case, we have the �le
‘celegans131positions_50.csv’ - which contains information on how the nodes relate to each other in 2-D space. We can include this
information to replace the layout.

neuronGraph = nx.from_numpy_matrix(neurons)

neuronLayout = nx.random_layout(neuronGraph, seed=123)

nx.draw_networkx(neuronGraph, neuronLayout,

 node_size=1000,

 labels = neuronLabels)

show()

PYTHON

neuronPos = read_csv('data/celegans131positions_50.csv', header=None)

neuronPositions = neuronPos.values

nx.draw(neuronGraph, neuronPositions,

 node_size=1000,

 labels = neuronLabels)

show()

PYTHON

The two BAG nodes to the right of the display are the (right and left) sensory neurons used to monitor oxygen and carbon dioxide.

Find the node indices of the sensory neurons named ‘BAGL’ and ‘BAGR’.

Solution

Networks Repository: List of Edges
Network �les in the Network Repository are sourced from publications and provided in the ‘.edges’ format. These are plain text �les. Let’s
have a look at the network of a mouse visual cortex. You can �nd this at MOUSE-VISUAL-CORTEX-1. You can either download the zip �le

DO IT YOURSELF

for ind, name in enumerate(neuronLabels.values()):

 if 'BAG' in name:

 print(ind, neuronLabels[ind])

PYTHON

47 BAGL

48 BAGR

OUTPUT

https://www.wormatlas.org/neurons/Individual%20Neurons/BAGframeset.html
http://networkrepository.com/index.php
http://networkrepository.com/bn-mouse-visual-cortex-1.php

from the database or use the �le provided for this Lesson.

Place the �le ‘bn-mouse_visual-cortex_1.edges’ in your working directory. It can be helpful to �rst open it in any text-editor to see what the
data look like. In this case, it is a list of two numbers per row, separated by a space. This is the list of (directed) edges. The �rst number
indicating ‘from’, the second ‘to’. Nodes are not given explicitly but will be inferred from the indices.

Being a list of edges, we can import it into NetworkX as an edgelist, specifying that the nodes are given as integers. The result is a
standard graph object which we can plot using draw.

To interpret the network, you can check it against the source, MOUSE-VISUAL-CORTEX-1.

MouseCortex = nx.read_edgelist("data/bn-mouse_visual-cortex_1.edges", nodetype=int)

MouseCortexLayout = nx.random_layout(MouseCortex, seed=111)

nx.draw(MouseCortex, MouseCortexLayout,

 node_size=1000,

 node_color='r',

 with_labels=True)

show()

PYTHON

http://networkrepository.com/bn-mouse-visual-cortex-1.php

Network Repository provides some summary data on all their networks. Obtain the (i) number of nodes, (ii) number of edges, and
(iii) average clustering coef�cient and compare it to the data in their network summary.

Solution

JSON Format
JSON (JavaScript Object Notation) is an open standard �le format which is language independent and widely used. Here is an example
code to import and display the network that contains co-occurances of characters in Victor Hugo’s novel ‘Les Misérables’.

DO IT YOURSELF

print('Number of nodes:', len(MouseCortex))

print('')

print('Number of edges:', len(MouseCortex.edges))

print('')

print('Average clustering coefficient:', mean(list(nx.clustering(MouseCortex).values())))

PYTHON

Number of nodes: 29

Number of edges: 44

Average clustering coefficient: 0.04942528735632184

OUTPUT

import json

with open('data/miserables.json', 'r') as myfile:

 data=myfile.read()

miserables = json.loads(data)

miserablesNetwork = nx.json_graph.node_link_graph(miserables)

miserablesNetworkLayout = nx.circular_layout(miserablesNetwork)

fig, ax = subplots(figsize=(12,12))

nx.draw(miserablesNetwork, miserablesNetworkLayout,

 node_size=3000,

 with_labels=True)

fig.tight_layout()

show()

PYTHON

https://networkrepository.com/bn-mouse-visual-cortex-1.php
https://en.wikipedia.org/wiki/JSON
http://konect.cc/networks/moreno_lesmis/

As you can see, the ‘data’ variable contains the character names as node names.

If you are curious, open the �le with a text editor and check the entries.

E.g. our �le starts like this:

{

 "nodes": [

 {"id": "Myriel", "group": 1},

As you can see, the style with curly brackets and colons immediately suggests the use of associative arrays (dictionary) once the data are
within Python. The function node_link_graph provides an interface to handle the data as a NetworkX graph.

There are many other �les formats that contain network data. For a list of NetworkX functions that allow import from and export to other �le
formats, see Reading and writing graphs.

NetworkX troubleshooting
There are many errors that may occur in the context of dealing with network data. We exemplify some common problems, to help �nd out
how to diagnose and solve them.

FileNotFoundError
Here we try to import a CSV �le which contains an adjacency matrix. We have checked that the �le is present in the working directory.

What has gone wrong, and what is the solution?

Solution

You’ll see this error if something has gone wrong in the way you’ve instructed Python to �nd your �le. This may be that you’ve mis-
typed the �le name, or the �le isn’t in your working directory. Here, the �le is present in the working directory, but there’s a typo in
the �le name.

KeyError
Here we generate a random adjacency matrix, specify how it should be plotted, and try to visualise it.

neurons = read_csv('data/celegans131mtrix_50.csv', header=None, dtype="float64")

PYTHON

FileNotFoundError: [Errno 2] No such file or directory: 'data/celegans131mtrix_50.csv'

OUTPUT

DO IT YOURSELF

neurons = read_csv('data/celegans131matrix_50.csv', header=None, dtype='int')

PYTHON

http://localhost:8888/lab/tree/Dropbox/Lessons_NetworkX

rm = randint(0, 2, size=(5, 5))

thisgraph = nx.from_numpy_matrix(rm)

thisgraphLayout = nx.spiral_layout(thisgraph)

thisgraphLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

 4: 'E',

 5: 'F',

}

nx.draw(thisgraph, thisgraphLayout,

 labels=thisgraphLabels)

show()

PYTHON

KeyError: 5

OUTPUT

Why does the call of draw throw an error, and what is the solution?

DO IT YOURSELF

Solution

If you look at the error message, it �rst �ags 5: ‘F’,, and ends with an error about labels. We’ve included too many node labels: 6
labels for �ve nodes. This is easily corrected by taking one label out.

rm = randint(0, 2, size=(5, 5))

thisgraph = nx.from_numpy_matrix(rm)

thisgraphLayout = nx.spiral_layout(thisgraph)

thisgraphLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

 4: 'E',

}

nx.draw(thisgraph, thisgraphLayout,

 node_size=1000,

 node_color='tomato',

 labels=thisgraphLabels)

show()

PYTHON

Graph is not bipartite
Here we generate a bipartite graph and try to plot it.

thisBipartite = nx.Graph()

Add nodes with the node attribute "bipartite"

thisBipartite.add_nodes_from(['a', 'b', 'c', 'd', 'e', 'f'], bipartite=0)

thisBipartite.add_nodes_from(['m', 'n', 'o', 'p', 'q', 'r'], bipartite=1)

Add edges only between nodes of opposite node sets

thisBipartite.add_edges_from([('a', 'm'), ('a', 'n'),

 ('b', 'n'), ('b', 'o'),

 ('c', 'o'), ('d', 'm'),

 ('a', 'p'), ('a', 'd'),

 ('f', 'p'), ('d', 'r'),

 ('a', 'q'), ('e', 'n')])

PYTHON

nx.is_connected(thisBipartite)

PYTHON

True

OUTPUT

basegroup = nx.bipartite.sets(thisBipartite)[0]

bipartiteLayout = nx.bipartite_layout(thisBipartite, basegroup)

nx.draw(thisBipartite, bipartiteLayout,

 node_size=2000,

 with_labels=True)

show()

PYTHON

networkx.exception.NetworkXError: Graph is not bipartite.

NameError: name 'basegroup' is not defined

NameError: name 'bipartiteLayout' is not defined

OUTPUT

Why did this happen, what check can you do to avoid the problem, and how do you debug it?

DO IT YOURSELF

Solution

In this instance, the error message is very clear: you can’t plot a graph with a bipartite layout if the graph isn’t bipartite. This would
have also been evident if I hadn’t just checked that the graph was connected, but also that it was bipartite.

There is one edge connecting two nodes within one group. If we either remove that edge, or change one of the nodes to the other
group, it will be bipartite.

nx.bipartite.is_bipartite(thisBipartite)

PYTHON

False

OUTPUT

thisBipartite = nx.Graph()

Add nodes with the node attribute "bipartite"

thisBipartite.add_nodes_from(['a', 'b', 'c', 'd', 'e', 'f'], bipartite=0)

thisBipartite.add_nodes_from(['m', 'n', 'o', 'p', 'q', 'r'], bipartite=1)

Add edges only between nodes of opposite node sets

thisBipartite.add_edges_from([('a', 'm'), ('a', 'n'),

 ('b', 'n'), ('b', 'o'),

 ('c', 'o'), ('d', 'm'),

 ('a', 'p'), ('a', 'n'),

 ('f', 'p'), ('d', 'r'),

 ('a', 'q'), ('e', 'n')])

PYTHON

nx.bipartite.is_bipartite(thisBipartite)

PYTHON

True

OUTPUT

basegroup = nx.bipartite.sets(thisBipartite)[0]

bipartiteLayout = nx.bipartite_layout(thisBipartite, basegroup)

fig = nx.draw(thisBipartite, bipartiteLayout,

 node_size=2000,

 node_color='tomato',

 node_shape='h',

 with_labels=True)

show()

PYTHON

Example: Full C. elegans Neural Network
In the �nal part, we look at two publicly available networks that are of biomedical interest.

In this �rst example we return to data about the neuronal connections in C. elegans. This time we are using the full 277 neuron dataset,
which includes 131 frontal neurons. For the original version of the data, go to the (Dynamic Connectome) website and select the Resources
tab.

The data in the network matrix in the celegans277.zip �le contain the connections between the 131 neurons in the frontal
network, and 146 in the remainder or the network. If the connections within each of these groups are severed, and the only remaining edges
are between the two groups, this takes the form of a bipartite graph.

We have made available this modi�ed version of the 277 neuron matrix, with no edges within the 131 or the 146 neuron group, see �le
‘celegans277matrix_bipartite.csv’. Note that bipartite networks do not work in NetworkX if any of the nodes are not connected. Also
available for download is a list of neuron labels and spatial positions, �les ‘celegans277labels.csv’ and ‘celegans277positions.csv’.

277 × 277

https://www.dynamic-connectome.org/

Here we import the bipartite module from NetworkX, and then import the bipartite 277 neuron adjacency matrix and list of neuron names,
with the same method as previously. Next, we use the bipartite convention in NetworkX to designate which nodes are in the group, and
which are in the group. There are several ways to make a graph bipartite, here this is done by listing the node numbers of the 146
neurons and adding the attribute , and listing the node numbers of the 131 neurons and adding the attribute .

We can con�rm that the network is bipartite.

neurons = read_csv('data/celegans277matrix_bipartite.csv', header=None, dtype="int")

neuronNames = read_csv('data/celegans277labels.csv', header=None)

neurons= neurons.to_numpy()

neuronNames= neuronNames.to_dict()

myBipartiteLabels = neuronNames[0]

myBipartite = nx.from_numpy_matrix(neurons)

PYTHON

0
1

bipartit = 0′ e′ bipartit = 1′ e′

myBipartite.add_nodes_from([

 0, 1, 2, 3, 13, 14, 17, 21, 22, 23, 24, 25,

 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 59,

 60, 61, 66, 67, 69, 78, 79, 84, 85, 86, 87, 88,

 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,

101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,

125, 126, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,

143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,

155, 156, 157, 158, 159, 160, 161, 162, 170, 171, 172, 173,

180, 195, 196, 203, 204, 205, 206, 207, 235, 236, 237, 238,

239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250,

251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,

263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274,

275, 276], bipartite=0)

myBipartite.add_nodes_from([

 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16,

 18, 19, 20, 37, 38, 39, 40, 41, 42, 43, 44,

 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

 56, 57, 58, 62, 63, 64, 65, 68, 70, 71, 72,

 73, 74, 75, 76, 77, 80, 81, 82, 83, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127,

128, 129, 130, 131, 132, 163, 164, 165, 166, 167, 168,

169, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 197,

198, 199, 200, 201, 202, 208, 209, 210, 211, 212, 213,

214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,

225, 226, 227, 228, 229, 230, 231, 232, 233, 234], bipartite=1)

PYTHON

nx.bipartite.is_bipartite(myBipartite)

PYTHON

Next, we continue to use the bipartite convention introduced above to de�ne the two bipartite groups, and set up a custom colouring list by
group.

True

OUTPUT

top = nx.bipartite.sets(myBipartite)[0]

pos = nx.bipartite_layout(myBipartite, top)

color_dictionary = {0:'gold',1:'lavender'}

color_list = [color_dictionary[i[1]] for i in myBipartite.nodes.data('bipartite')]

fig, ax = subplots(figsize=(10, 30))

nx.draw(myBipartite, pos,

 node_size=1200,

 labels=myBipartiteLabels,

 node_color=color_list)

show()

PYTHON

The graph shows in a preliminary way that there are certain preferred connections between the two sets, in this case between the frontal
group and the rest of the neurons.

Draw the bipartite neural network, coloured by group and positioned using the positional information from Dynamic Connectome in
the �le ‘celegans277positions.csv’.

DO IT YOURSELF

Solution

The 2D positions are contained in the �le ‘celegans277positions.csv’. After the import of the �le, they can be extracted into a
variable using values. The positions then need to replace the original layout values (called ‘pos’ above).

neuronPos = read_csv('data/celegans277positions.csv', header=None)

neuronPositions = neuronPos.values

fig, ax = subplots(figsize=(10, 20))

nx.draw(myBipartite, neuronPositions,

 node_size=3000,

 labels=myBipartiteLabels,

 node_color=color_list)

fig.tight_layout()

show()

PYTHON

Example: Microbiome network
Microbiome data can be collected from a wide variety of environments, and is generally considered to be the bacterial, fungal, and viral
components of a given environment. Friedman and Alm (2012) used data from the Human Microbiome Project to calculate pairwise
interaction correlations for each operational taxonomic unit (OTU). They then used Python and NetworkX to analyse and visualise several of
these correlation datasets for each human body site. The challenge here is to extract network information about a graph from bivariate
quantities like the correlation coef�cient.

https://doi.org/10.1371/journal.pcbi.1002687
https://www.nature.com/articles/nature11209

As the correlation data are open access, we can access them and derive the network.
Data are imported from text �les. In this case, it is not a CSV �le. Rather, the data are tab separated. We can adjust for this by specifying
the keyword argument delimiter for tab. As the correlation coef�cients are stored as decimal point numbers, we specify the keyword
argument dtype as �oating point ‘�oat64’.

If you check the �le, you will see that the �rst entry is ‘1.0’. This is because all self-correlations are (trivially) equal to one. We replace those
diagonal values with 0 to avoid (nonsensical) self-connections in the network.

gutbact = read_csv('data/Stool_sparse_adj_matrix.txt',

 header=None, delimiter='\t', dtype="float64")

gutbactNames = read_csv('data/Stool_sparse_matrix_names.txt',

 header=None)

gutbact= gutbact.to_numpy()

fill_diagonal(gutbact, 0)

gutbactNames= gutbactNames.to_dict()

gutbactLabels = gutbactNames[0]

PYTHON

gutbactGraph = nx.from_numpy_matrix(gutbact)

gutbactLayout = nx.circular_layout(gutbactGraph)

fig, ax = subplots(figsize=(16,16))

nx.draw(gutbactGraph, gutbactLayout,

 node_size=3000,

 node_color='r',

 labels=gutbactLabels)

show()

PYTHON

This gives us the correlation network from the stool samples, with nodes labelled by the OTU number. However, this doesn’t look much like
the data from the article, partly as there are so many edges. The reason is that any number in the network matrix that is not equal to zero is
interpreted as an edge. Thus, essentially the graph is fully connected.

Functional Networks
In the paper, Friedman and Alm (2012), the edges are taken from the correlation coef�cients of the correlation matrix. I.e. they de�ne the
correlation matrix as a network matrix. But the entries of the correlation matrix are not 0s and 1s as we have used so far. Instead they are
real numbers between -1 and 1. What Friedman and Alm did to obtain meaningful edges was to pick a threshold correlation, e.g.
and set any matrix entry with absolute value smaller than the threshold as 0. All other values are left as they are. Because anything non-
zero will be interpreted as an edge, this means that they only plot edges where the correlation coef�cient is greater than 0.3 or less than
-0.3. Such networks are referred to as functional networks.

To threshold the correlation matrix in Python, we select matrix values between -0.3 and 0.3, and replace them with 0. Then we convert this
thresholded network matrix to a graph and plot it.

|cc| = 0.3

from numpy import where, logical_and

threshold = 0.3

gutbact_threshold = where(logical_and(gutbact>=-threshold , gutbact<=threshold), 0, gutbact)

PYTHON

gutbactGraph = nx.from_numpy_matrix(gutbact_threshold)

fig, ax = subplots(figsize=(16,16))

nx.draw(gutbactGraph, gutbactLayout,

 node_size=3000,

 node_color='r',

 labels=gutbactLabels)

show()

PYTHON

This network only displays edges where strong correlations were found and this is how Friedman and Alm obtained their graphs. Note that
the network structure now is a function of the chosen threshold. Smaller thresholds yield more edges, higher thresholds fewer edges.
Choosing the right threshold may be dif�cult and needs further thought.

The creation of networks from functional data opens a wide �eld of research: any interrelation matrix obtained with whatever metric can be
interpreted as a network matrix and converted into a graph. As an example, see Figure 1 in The Brain as a Complex System: Using
Network Science as a Tool for Understanding the Brain which describes the procedure for brain imaging.

This concludes our set of Lessons on network handling in Python. For practice, try to �nd a database that touches on topics of your own
interest. As an example, in the context of the human brain, there is a rich database at the Human Connectome Database. Each database
will present its own challenges and obstacles. Nevertheless, it is worth to overcome those to be able to work with the data in Python.
Eventually, all functions and dysfunctions observed in living systems are a consequence of interactions between components.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621511/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621511/
http://www.humanconnectomeproject.org/data/

.csv is a common �le format when importing network data.

JSON is another widely used standard �le format which is language independent.

FileNotFoundError, KeyError and Graph is not bipartite are the most common �le import errors.

KEY POINTS

