
Content from Networks - Introduction

Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

Create a Network with NetworkXCreate a Network with NetworkX

OVERVIEW

Questions

How are graphs represented?

How are graphs visualised?

What are common types of graphs?

Objectives

Understanding the notion of a graph

Explaining nodes and edges represent networks

The network matrix formalism

Visualising graphs

Understanding undirected, directed and bipartite graphs

Networks

http://127.0.0.1:4649/01-networks_1.html
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/01-networks_1.Rmd
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/01-networks_1.Rmd
http://127.0.0.1:4649/01-networks_1.pdf
http://127.0.0.1:4649/01-networks_1.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1
https://www.youtube.com/watch?v=E7rHW3CSREU

Visualising a Network with NetworkXVisualising a Network with NetworkX

Webinar: An Introduction to NetworksWebinar: An Introduction to Networks

Basic Python

Basic Matplotlib

Example: Protein-protein interactions
Protein-protein interactions (PPIs) (PLoS: Protein–Protein Interactions) refer to specific functional or physical contact between proteins in
vivo. Interactions may be dependent on biological context, organism, definition of interaction, and many other factors. An example of PPIs
can be seen below.

PREREQUISITES

https://www.youtube.com/watch?v=w1XWeh-A3h0
https://www.youtube.com/watch?v=zj7kWVH8uck
https://learntodiscover.github.io/Basic_Python/
https://matplotlib.org/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2891586/

PPIs may be conceptualised as a network, in order to give greater context to the protein interactions, and to see how changes to one
protein may affect another protein several steps removed. A PPI network can be modelled via a graph in which the nodes represent the
proteins and the edges represent interactions: an edge from node A to node B indicates protein B interacts with protein A. The diagram
above shows the PPI network centred around the protein in Escherichia coli K12 MG1655. This is part of a toxin-antitoxin system.
These systems generally encode pairs of toxin and inhibitory antitoxin proteins, are transmitted by plasmids, and likely serve several
biological functions including stress tolerance and genome stabilisation. regulates the type II toxin-antitoxin system shown in this
network, where is the toxin and is the antitoxin. More details on the proteins in this network can be seen on STRING-DB
(STRING-DB: mazG in E. coli.

At the end of this lesson we are going to use Python to draw this PPI network. Before this however, we shall begin with some examples to
familiarise you with the elements and properties of graphs.

An Introduction to Networks

What is a graph?
A graph is an object in mathematics to describe relationships between objects. A simple example of a visual representation of a graph is
given below.

mazG

mazG

mazF mazE

https://version-11-0b.string-db.org/cgi/network?networkId=b6lw5pU2DeQm

This graph contains three objects - nodes or vertices - and three links - edges or arcs - between the nodes. Graphs can be used to
represent networks. For a formal definition of a graph see, e.g. the Wikipedia entry.

If the above graph represented a protein-protein interaction network then the nodes would represent three proteins and the edges
represent interactions between them. To add further proteins, you add new nodes to the network. To include further dependencies (when
there are more nodes), you add edges.

We shall see below how we can build, modify and represent networks in Python.

NetworkX
NetworkX is a Python package for the creation, manipulation, and study of the structure, dynamics, and functions of complex networks.

To use NetworkX and visualise your networks, you can import the whole package.

Nodes and Edges
Nodes are a basic unit of network data, and are linked to other nodes by edges, which show the way(s) in which the nodes are connected or
related. In NetworkX, a range of Python objects, including numbers, text strings, and networks can be nodes.

Let’s start by creating an empty graph object and then add some nodes to it.

import networkx as nx

from matplotlib.pyplot import show

PYTHON

firstGraph = nx.Graph()

firstGraph.add_node('Node A')

firstGraph.add_node('Node B')

firstGraph.add_node('Node C')

print(type(firstGraph))

print('')

print(firstGraph.nodes)

print('')

PYTHON

https://en.wikipedia.org/wiki/Graph_theory
https://networkx.org/

We have created a graph called firstGraph, added three nodes, and then printed the type of object and a list of the nodes in this graph. So
far, these nodes have no relationship to each other? To specify relationships (representing e.g. interactions) we can add edges to show how
the nodes are connected.

Here we created edges between Nodes A and B, A and C, and B and C, and printed a list of these edges. We can also get a summary of
how many nodes and edges our graph currently has. At this stage, our graph should have three nodes and three edges. Here is how to
check that in NetworkX.

Visualising networks
We have a basic graph called firstGraph, so let’s visualise it. In NetworkX, we can use function draw.

<class 'networkx.classes.graph.Graph'>

['Node A', 'Node B', 'Node C']

OUTPUT

firstGraph.add_edge('Node A', 'Node B')

firstGraph.add_edge('Node A', 'Node C')

firstGraph.add_edge('Node B', 'Node C')

print(firstGraph.edges)

PYTHON

[('Node A', 'Node B'), ('Node A', 'Node C'), ('Node B', 'Node C')]

OUTPUT

firstGraph.number_of_nodes()

PYTHON

3

OUTPUT

firstGraph.number_of_edges()

PYTHON

3

OUTPUT

nx.draw(firstGraph)

show()

PYTHON

With the default settings, we get a triangle with three blue nodes in the corners, connected by three lines. There are no arrowheads on the
lines, the network is therefore referred to as undirected.

To make the graph less abstract, we can add labels to the nodes. This is done setting up a dictionary where we use as keys the names
given to the nodes when they were set up. The single value is the label to be used for the display.

Through NetworkX we can also dictate the way the nodes are positioned by setting a layout. There are many options, and we are using the
spiral layout as an example. For a list of layout options, please check the NetworkX documentation.

firstGraphLayout = nx.spiral_layout(firstGraph)

firstGraphLabels = {

key : value

 'Node A': 'A',

 'Node B': 'B',

 'Node C': 'C',

}

nx.draw(firstGraph, firstGraphLayout,

 labels=firstGraphLabels)

show()

PYTHON

https://networkx.org/documentation/stable/reference/drawing.html#module-networkx.drawing.layout

We use draw providing the graph object followed by the (optional) layout as positional arguments. Other keyword arguments (here
the labels) are then added, separated by comma.

If you want to save a network graph to a file, you can use function savefig. Here is an example that will save the figure in the
folder with the code.

NOTE

SAVING FIGURES

from matplotlib.pyplot import savefig

PYTHON

You may want to alter the appearance of your graph in different ways. Let’s say you want the nodes to be red: you achieve this by using
the keyword argument node_color.

firstGraphLayout = nx.spiral_layout(firstGraph)

firstGraphLabels = {

 'Node A': 'A',

 'Node B': 'B',

 'Node C': 'C',

}

nx.draw(firstGraph, firstGraphLayout,

 labels=firstGraphLabels)

savefig('my_network.png', format='png');

show()

PYTHON

nx.draw(firstGraph, firstGraphLayout,

 labels=firstGraphLabels,

 node_color='r')

show()

PYTHON

Note that, as always, the spelling is the US version, ‘color’.

Creating a Network Matrix
A generic way to define graphs is via a two dimensional array known as the network matrix or adjacency matrix. We won’t go into the
details of matrices here but will just show you how to create them in Python.

For our purpose a matrix is a collection of numbers. Let us start by creating a matrix that contains only zeroes. A very easy way to create a
matrix with zeroes in Python is using zeros from Numpy. The number of network nodes is equal to the number of rows and columns in the
array.

from numpy import zeros

nodes = 3

my_matrix = zeros((nodes, nodes))

print(my_matrix)

PYTHON

[[0. 0. 0.]

 [0. 0. 0.]

 [0. 0. 0.]]

OUTPUT

We have given the zeros function two arguments, 3 and 3, and it has created an array of 9 numbers (all of value 0) arranged into 3 rows
and 3 columns. This is a square matrix because the number of rows is equal to the number of columns. We say that this matrix is of
dimension .

To check the dimensions of a Numpy array, you can use shape. Since in the above code we have assigned the matrix to the variable
my_matrix we can call it as follows.

Note that shape does not take arguments. It returns the dimensions of the matrix as an array of length 2; the first element is the
number of rows and the second element is the number of columns.

We can now access each element of my_matrix and change its value. To change the element in the second row and the third column we
use the syntax my_matrix[1, 2] where we first specify the row index and the column index second, separated by a comma.

Create a 4x4 matrix called and set the elements , and .

3 × 3

my_matrix.shape

PYTHON

(3, 3)

OUTPUT

NOTE

my_matrix[2, 0] = 1

my_matrix[1, 0] = 1

print(my_matrix)

PYTHON

[[0. 0. 0.]

 [1. 0. 0.]

 [1. 0. 0.]]

OUTPUT

DO IT YOURSELF

n = 1n0,1 = 1n1,2 = 1n1,3

Solution

Representing graphs
Now we shall see how a square matrix can represent a graph with three nodes which we call , and . Consider the following
table where we have taken the matrix elements and labelled both the rows and the columns and .

n = zeros((4,4))

n[0, 1] = 1

n[1, 2] = 1

n[1, 3] = 1

print(n)

PYTHON

[[0. 1. 0. 0.]

 [0. 0. 1. 1.]

 [0. 0. 0. 0.]

 [0. 0. 0. 0.]]

OUTPUT

3 × 3 A B C

A,B C

This matrix can represent a graph with three nodes. The value of 1 in the first row and the second column indicates that there is an edge
from node to node . Therefore, the row position indicates the node that an edge emanates from and the column position indicates the
node that the edge ends on.

We can see that there are four edges in this graph:

from node to node

from node to node

from node to node

from node to node

For the matrix, , created in Exercise 1.1, is a network matrix representing a graph, use code to check the number of nodes and
edges.

A B

A B

B A

B C

C A

DO IT YOURSELF

n

Solution

The graph has four nodes and three edges.

$n_{0,1} $ or $n[0][1]$ is an edge from node 0 to node 1.

$n_{1,2}$ or $n[1][2]$ is an edge from node 1 to node 2.

$n_{1,3}$ or $n[1][3]$ is an edge from node 1 to node 3.

Different Layouts for Visualisation
Now that we know how to create a matrix which can represent the graph, we want to know what the graph coming from this matrix looks
like.
First, we set up the network (or: adjacency) matrix in the above table from scratch. Then we use NetworkX function from_numpy_matrix to
turn our matrix into a NetworkX Graph object called new_graph. We set the layout to a spiral layout (as we did before) and then draw the
graph.

new_matrix = zeros((3,3))

new_matrix[1, 2] = 1

new_matrix[2, 0] = 1

new_matrix[0, 1] = 1

new_matrix[1, 0] = 1

new_graph = nx.from_numpy_matrix(new_matrix)

newLayout = nx.spiral_layout(new_graph)

nx.draw(new_graph, newLayout)

show()

PYTHON

We haven’t specified labels. We can specify the labels using a dictionary. Let us first see how the nodes are stored to find their Python
names.

By default, the nodes are given the names of their indices. We can refer to these indices and assign labels.

We can now draw the graph again, and specify the new labels A, B, and C.

list(new_graph.nodes)

PYTHON

[0, 1, 2]

OUTPUT

newLabels = {

key : value

 0: 'A',

 1: 'B',

 2: 'C',

}

PYTHON

There are many different options available for drawing graphs. Use help(nx.draw) to get a description of the options available for the
graph as a whole, the nodes and the edges.

We shall first experiment with the graph layout. Converting a mathematical description of a graph, i.e. an adjacency matrix, to a graphical
description is a difficult problem, especially for large graphs. The algorithms that perform this operation are known as graph layout
algorithms and NetworkX has many of them implemented. We used spiral_layout to produce the drawing above. Further specifications
can be made within each layout, and you can access the details with .

Some graph layout algorithms have a random component such as the initial position of the nodes. This means that different realisations of
the layouts will not be identical.

1. Use the graph layout algorithm called shell_layout to plot new_graph.

2. Draw the graph with a third layout algorithm called random_layout. Execute the code to draw the graph several times.

3. Draw the graph from the matrix , created in Exercise 1.1 with the layout algorithm spectral_layout. Give the nodes the
names , , and .

nx.draw(new_graph, newLayout,

 labels=newLabels)

show()

PYTHON

help

DO IT YOURSELF

n

V X Y Z

Solution

newLayout = nx.shell_layout(new_graph)

nx.draw(new_graph, newLayout,

 labels=newLabels)

show()

PYTHON

Solution

newLayout = nx.random_layout(new_graph)

nx.draw(new_graph, newLayout)

show()

PYTHON

The layout of this graph changes each time you run the code.

PYTHON

Solution

n = zeros((4,4))

n[0, 1] = 1

n[1, 2] = 1

n[1, 3] = 1

new = nx.from_numpy_matrix(n)

newLabels = {

 0: 'V',

 1: 'X',

 2: 'Y',

 3: 'Z',

}

newLayout = nx.spectral_layout(new)

nx.draw(new, newLayout,

 labels=newLabels)

show()

PYTHON

Customising nodes and edges
Now we are going to look at some ways to access and change some properties, or attributes, of the nodes in the graph. We have already
changed the node colour from blue to red. Let’s say we want to change the colour to gold (for a list of available names see matplotlib: plot
colours), change the node shapes to hexagons (matplotlib: node shapes), and increase the node size. This plot will vary each time you run it,
due to the layout algorithm.

You may want to add another node, but only have it connected to one of the existing nodes. Here we add a new node, which is the number
3 (because Python indexes from zero). You can print the nodes and see that you now have four.

new_graph = nx.from_numpy_matrix(new_matrix)

newLayout = nx.random_layout(new_graph)

newLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

}

nx.draw(new_graph, newLayout,

 labels=newLabels,

 node_color='gold',

 node_shape="H",

 node_size=2000)

show()

PYTHON

https://matplotlib.org/3.1.0/gallery/color/named_colors.html
https://matplotlib.org/3.1.0/gallery/color/named_colors.html
https://matplotlib.org/3.1.1/api/markers_api.html

We may want to set a new layout for this graph and update the labels to call the new node ‘D’. You will see that the new node is not
connected to any other node, because we have not specified how it relates to the other nodes.

new_graph.add_node(3)

print(new_graph.nodes)

PYTHON

[0, 1, 2, 3]

OUTPUT

newLayout = nx.random_layout(new_graph)

newLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D'

}

nx.draw(new_graph, newLayout,

 labels=newLabels,

 node_color='gold',

 node_shape="H",

 node_size=800);

show()

PYTHON

We discussed above changing the colour of the nodes in our graph. There are several ways you can specify colour in Python (matplotlib:
node shapes). The RGB format is one of these methods used for specifying a colour. The colour is specified via an array of length 3
containing the relative amounts of Red, Green, and Blue. Red is specified via , blue via and green via . As special
cases, will give you black, and will give white.

Add an edge to the network to connect the isolated node D to e.g. node A.

[[1, 0, 0]] [[0, 0, 1]] [[0, 1, 0]]
[[0, 0, 0]] [[1, 1, 1]]

DO IT YOURSELF

https://matplotlib.org/3.1.1/api/markers_api.html
https://matplotlib.org/3.1.1/api/markers_api.html

Solution

Instead of altering individual elements of a matrix with zeroes (as we have done above) you can also create a graph directly from a Numpy
array. You set up a nested list and convert it to a Numpy array using array.

new_graph.add_edge(3, 0)

nx.draw(new_graph, newLayout,

 labels=newLabels,

 node_color='gold',

 node_shape="H",

 node_size=800);

show()

PYTHON

Set all the nodes in this graph to turquoise diamonds. By turquoise we mean the RGB colour

from numpy import array

matrixFromArray = array([[0, 1, 0, 0],

 [0, 1, 0, 1],

 [1, 0, 1, 1],

 [1, 0, 1, 0]])

my_graph = nx.from_numpy_matrix(matrixFromArray, create_using=nx.DiGraph())

my_graphLayout = nx.spring_layout(my_graph)

nx.draw(my_graph, my_graphLayout)

show()

PYTHON

DO IT YOURSELF

[[0, 1, 1]]

Solution

A number of prototypic networks are the fully connected network (each node is connected to all other nodes); the random network
(each node is connected to a random subset of other nodes); and the Watts-Strogatz network (a network with a combination of
systematically and randomly assigned edges). They are demonstrated in a video tutorial accompanying this Lesson.

Directed graphs
So far, we have been working with undirected graphs: all the edges between the nodes were independent of the direction in which they
were set up and thus represented as lines without arrowheads. Such networks are also referred to as bidirectional. For some systems, such
as biochemical reactions, a directed graph is more suited, and gives us more detail on the relationships represented in the network.

In NetworkX, directed graphs are handled using the class DiGraph. We can make a simple DiGraph by importing a matrix as above, but
specifying that it is a directed graph.

nx.draw(my_graph, newLayout,

 labels=newLabels,

 node_color=[[0, 1, 1]],

 node_shape="D",

 node_size=800)

show()

PYTHON

You’ll be able to see in this graph that the edges now have arrow tips indicating the direction of the edge. The edge between node A and
node D has an arrow tip on each end, indicating that edge is bidirectional. Node B is also connected to itself.

In NetworkX convention an edge is set up in a network matrix in the direction row column. Thus, a given row tells us which edges leave
the node with that row number. A given column tells us which edges arrive at the node with that column number. Thus the bidirectional
edge between node A and node D is given by directedMatrix and directedMatrix both being equal to 1.

An entry on the diagonal, directedMatrix , is used for self-connection of node B.

directedMatrix = array([[0, 1, 0, 1],

 [0, 1, 1, 0],

 [0, 0, 0, 1],

 [1, 1, 0, 0]])

directed = nx.from_numpy_matrix(directedMatrix, create_using=nx.DiGraph)

directedLayout = nx.spiral_layout(directed)

directedLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

}

nx.draw(directed, directedLayout,

 labels=directedLabels)

show()

PYTHON

→

3,0 0,3

1,1

Change directedMatrix to 1. What does this change about the graph?

DO IT YOURSELF

3,2

Solution

directedMatrix = array([[0, 1, 0, 1],

 [0, 1, 1, 0],

 [0, 0, 0, 1],

 [1, 1, 0, 0]])

directedMatrix[3, 2] = 1

directed = nx.from_numpy_matrix(directedMatrix, create_using=nx.DiGraph)

directedLayout = nx.spiral_layout(directed)

directedLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

}

nx.draw(directed, directedLayout,

 labels=directedLabels)

show()

PYTHON

Bipartite graphs
Bipartite graphs are another graph type supported by NetworkX. These are networks which are made up of two groups of nodes which
connect to nodes in the other group, but not with other nodes in the same group. Some ecological, biomedical, and epidemiological
networks may be represented by bipartite networks. In NetworkX there is not a specific bipartite class of graphs, but both the undirected
and directed methods we have used earlier may be used to represent bipartite graphs. However, it is recommended to add an attribute to
the nodes in your two groups to help you differentiate them. The convention in NetworkX is to assign one group of nodes an attribute of 0,
and the other an attribute of 1.

Here, we set up a bipartite network with 8 nodes. The 0 group has nodes , and the 1 group has nodes . The
specified edges link nodes from the two groups with each other, but not to any nodes within their own group. NetworkX has a function to
check your nodes are connected.

This will return either true or false. Be cautious though, this only tests for connection, not whether your graph is truly bipartite. You can use
the function nx.is_bipartite(myBipartite) from networkx.algorithms to test whether your network is bipartite. It will return TRUE
if your NetworkX object is bipartite.

We can now plot the bipartite graph, using the layout of your choice. if we include the term as we draw the graph, the
node names we set earlier become the node labels.

from networkx.algorithms import bipartite

myBipartite = nx.Graph()

Add nodes with the node attribute "bipartite"

myBipartite.add_nodes_from(['h', 'i', 'j', 'k'], bipartite=0)

myBipartite.add_nodes_from(['q', 'r', 's', 't'], bipartite=1)

Add edges only between nodes of opposite node sets

myBipartite.add_edges_from([('h', 'q'),

 ('h', 'r'),

 ('i', 'r'),

 ('i', 's'),

 ('j', 's'),

 ('k', 'q'),

 ('h', 't')])

PYTHON

′h′,′ i′,′ j′,′ k′ ′q ′,′ r′,′ s′,′ t′

nx.is_connected(myBipartite)

PYTHON

True

OUTPUT

bipartite.is_bipartite(myBipartite)

PYTHON

True

OUTPUT

with_labels = True

This might not look like a bipartite network! But if you check the edges you set up earlier, this is bipartite as no node has an edge with
another node in each group. If we want it to look more like a classic bipartite network, we can use the attributes we set up earlier and the
module to make a custom layout and more clearly visualise the bipartite nature of this graph.

myBipartiteLayout = nx.spiral_layout(myBipartite)

nx.draw(myBipartite, myBipartiteLayout,

 node_size=2000,

 with_labels=True)

show()

PYTHON

networkx.algorithms

groupzero = nx.bipartite.sets(myBipartite)[0]

bipartitePos = nx.bipartite_layout(myBipartite, groupzero)

nx.draw(myBipartite, bipartitePos,

 node_size=2000,

 with_labels = True)

show()

PYTHON

Using the bipartite convention of giving one group of nodes the attribute 0 and the other 1 means that you can use this to change other
aspects of your graph, such as colour. Here, we use the attributes of the nodes to assign a colour to each group of nodes. The colour list can
then be included in the plot.

color_dictionary = {0: 'gold', 1: 'lavender'}

color_list = list()

for attr in myBipartite.nodes.data('bipartite'):

 color_list.append(color_dictionary[attr[1]])

print(color_list)

PYTHON

['gold', 'gold', 'gold', 'gold', 'lavender', 'lavender', 'lavender', 'lavender']

OUTPUT

A readable introduction to bipartite networks and their application to gene-disease networks can be found in section 2.7 of the online
textbook Network Science by A.L. Barabási.

Exercises

nx.draw(myBipartite, bipartitePos,

 node_size=2000,

 font_size=20,

 with_labels=True,

 node_color=color_list)

show()

PYTHON

http://networksciencebook.com/chapter/2#bipartite-networks

Use code to create the (undirected) toxin-antitoxin PPI network given at the start of this example. Experiment with the different
layout algorithms, the node colour and shape, and the edge color.

Hint:

Using pen and paper, draw a diagram of the PPI network.

Decide on the ordering of the nodes. I chose to start with the centre node, and then number them in an anticlockwise direction.
(Hint: There are 11 nodes in total.)

Label your pen and paper diagram with the node numbers.

Work out all the edges in the graph. Note the numbers of the node at the start of the edge and the node at the end of the edge.
(Hint: There are 20 edges in total.)

Define a matrix in Python using the Numpy zeros function.

For each edge, set the corresponding entry in the matrix to 1 (start node number corresponds to row number and end node
number corresponds to column number in the adjacency matrix).

Define a cell array containing your node names and create a NetworkX object.

Experiment with the layout, colours, node shapes etc.

Remember to use the Python documentation, e.g. using help() if you have problems (or alternatively use a search engine such as
Google).

To save the graph as an image file, use savefig as we did earlier.

ASSIGNMENT: THE TOXIN-ANTITOXIN NETWORK

11 × 11

Solution

import networkx as nx

from numpy import zeros

ppi = zeros((11,11))

ppiLabels = {

 0: 'mazG',

 1: 'mazE',

 2: 'mazF',

 3: 'relA',

 4: 'era',

 5: 'rpo2',

 6: 'dcd',

 7: 'pyrG',

 8: 'adk',

 9: 'cpdA',

 10: 'ygdH',

}

ppi[0, 1] = 1

ppi[2, 1] = 1

ppi[0, 2] = 1

ppi[2, 3] = 1

ppi[0, 3] = 1

ppi[1, 3] = 1

ppi[4, 3] = 1

ppi[5, 3] = 1

ppi[4, 0] = 1

ppi[5, 0] = 1

ppi[5, 6] = 1

ppi[5, 7] = 1

ppi[0, 7] = 1

ppi[8, 7] = 1

ppi[8, 0] = 1

ppi[8, 9] = 1

ppi[8, 10] = 1

ppi[0, 9] = 1

ppi[9, 10] = 1

ppi[0, 10] = 1

ppiGraph = nx.from_numpy_matrix(ppi)

ppiLayout = nx.spring_layout(ppiGraph)

nx.draw(ppiGraph, ppiLayout,

 labels=ppiLabels,

 node_size=1800,

 node_color='lightseagreen',

 node_shape="8")

show()

PYTHON

A Python package NetworkX is used for studying undirected and directed graphs.

A function savefig is used to save a graph to a file.

network matrix or adjacency matrix is a generic way to create graphs as two dimensional array.

In NetworkX, directed graphs are handled using the class DiGraph.

Bipartite graphs are made up of two groups of nodes which connect to nodes in the other group, but not with other nodes in the
same group.

Content from Networks - Quantification

Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

KEY POINTS

OVERVIEW

http://127.0.0.1:4649/02-networks_2.html
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/02-networks_2.Rmd
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/02-networks_2.Rmd
http://127.0.0.1:4649/02-networks_2.pdf
http://127.0.0.1:4649/02-networks_2.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Create Random Network MatricesCreate Random Network Matrices

The Watts-Strogatz NetworkThe Watts-Strogatz Network

Questions

How to generate test matrices using NetworkX?

What is the purpose of the node degree and the degree distribution?

How can a network be quantified?

Objectives

Creating network matrices with random edges.

Quantifying network properties.

Applying networks concepts to the C. elegans neural network.

https://www.youtube.com/watch?v=nU8ossLYBc4
https://www.youtube.com/watch?v=3MQNgrtjY-A

Network QuantificationNetwork Quantification

Introduction to Networks

Generating Test Matrices
NetworkX has a number of ways to create matrices with given specifications. We have seen in the previous lesson that e.g. zeros((5,5))
creates a matrix filled with zeroes. This speeds up the creation of a network matrix with only a few non-zero entries. Similarly, one
can start with function ones from Numpy to create a network with few zero entries.

However, to test network code we would like to be able to easily create test matrices without having to fill in the information about the
edges manually. Typically, one wants to quickly create an arbitrary number of realisations to study e.g. a distribution of network properties.

Here is a way to create matrices with randomly assigned edges using function randint.

PREREQUISITES

import networkx as nx

from matplotlib.pyplot import subplots, show

PYTHON

5 × 5

from numpy.random import randint

nodes = 5

rm = randint(0, 2, size=(nodes, nodes))

print(rm)

PYTHON

https://www.youtube.com/watch?v=FLF-Hz_PhFs
http://127.0.0.1:4649/01-networks_1.html

Function from the numpy module is used to create an array or matrix filled with integers.

The first two arguments, two integer numbers, specify which integers to use. The first number is the smallest integer, the second number is
the largest integer plus one. The first two numbers work as so this function will produce numbers (N) in range specified as:

. In our case entering will produce zeroes and ones. With , all integers from 1 to 9 will be used, all with equal
probability.

The keyword argument size specifies the dimensions of the matrix. In our case we want a matrix for a specified number of
nodes. The output of the code will look different at each function call because each time you execute the code, Python will assign the zeroes
and ones randomly.

There are many ways to create network matrices with different specifications. These can be used to test null hypotheses about
experimental data. For example, one can generate networks with the same amount of nodes and edges as in an experimental network but
with random assignment of edges to test whether the observed connections are likely to be due to chance. Some biological networks seem
to have the so-called ‘small world’ property, where in spite of relatively few connections there are quick ways to get from one node to any
other node by tracing a path along combinations of edges.

There is a way to have Python return the same random numbers when using functions like by using the function (also from
the module). Reproducibility is central to coding, and functions such as this facilitate reproducibility.

The command sets the value of the ‘seed’ used to initialise the random number generator to . The choice of seed value is arbitrary.
The important thing is that specifying a value will mean the random number results are reproducible.

When we specify a starting seed value for the number generator it still produces random numbers but will produce the same set of random
numbers each time the code is executed. To test this run the following example:

And repeated:

[[1 0 0 1 0]

 [1 1 0 1 1]

 [1 1 1 0 1]

 [1 1 0 0 0]

 [1 0 1 1 0]]

OUTPUT

randint random

(a, b+ 1)
a <= N <= b (0, 2) (1, 10)

nodes × nodes

randint seed

random

seed(1) 1

from numpy.random import seed

seed(1)

rm1 = randint(0, 2, size=(nodes, nodes))

print(rm1)

PYTHON

[[1 1 0 0 1]

 [1 1 1 1 0]

 [0 1 0 1 1]

 [0 0 1 0 0]

 [0 1 0 0 1]]

OUTPUT

https://en.wikipedia.org/wiki/Small-world_network

Since we set the same (arbitrary) seed for both of these function calls, both produce the same pattern of 1s and 0s. The results are identical:

Create a matrix with randomly distributed integers from 1 to 6 to simulate a group of 3 players throwing a dice 20 times.

seed(1)

rm2 = randint(0, 2, size=(nodes, nodes))

print(rm2)

PYTHON

[[1 1 0 0 1]

 [1 1 1 1 0]

 [0 1 0 1 1]

 [0 0 1 0 0]

 [0 1 0 0 1]]

OUTPUT

rm1 == rm2

PYTHON

array([[True, True, True, True, True],

 [True, True, True, True, True],

 [True, True, True, True, True],

 [True, True, True, True, True],

 [True, True, True, True, True]])

OUTPUT

DO IT YOURSELF

n×m

Solution

NetworkX graph types
NetworkX has built-in function to produce classic graphs. For example, a Petersen graph has 10 nodes and 15 edges.

players = 3

rounds = 20

throws = randint(1, 7, size=(rounds, players))

print(throws)

PYTHON

[[5 3 5]

 [6 3 5]

 [2 2 1]

 [6 2 2]

 [6 2 2]

 [1 5 2]

 [1 1 6]

 [4 3 2]

 [1 4 6]

 [2 2 4]

 [5 1 2]

 [4 5 3]

 [5 1 6]

 [4 2 3]

 [1 5 2]

 [3 3 2]

 [1 2 4]

 [6 5 4]

 [6 2 4]

 [1 1 3]]

OUTPUT

petersen = nx.petersen_graph()

layout = nx.spectral_layout(petersen)

nx.draw(petersen, with_labels=True)

show()

PYTHON

https://en.wikipedia.org/wiki/Petersen_graph

Some stochastic graphs can also be generated simply within NetworkX. A random lobster graph is a graph which becomes a caterpillar
graph if all leaf nodes are removed.

nodes = 50

p1: Probability of adding an edge to the backbone

p2: Probability of adding an edge one level beyond backbone

p1 = 0.9

p2 = 0.5

lobster = nx.random_lobster(nodes, 0.9, 0.5)

layout = nx.spiral_layout(lobster)

nx.draw(lobster, layout, with_labels=True)

show()

PYTHON

The first argument is the number of nodes in the graph backbone, the second argument is the probability of adding an edge to this main
backbone, and the third number gives the probability of adding further edges. Try running it several times, and with different values, to see
how it changes.

Look up the NetworkX documentation, and use the tutorial to plot a Tutte graph.

DO IT YOURSELF

https://en.wikipedia.org/wiki/Tutte_graph

Solution

Node degree
Each node within a graph has a number of edges connected to it and this number is referred to as the node (or vertex) degree. For example,
consider the protein-protein interation graph generated in the previous Lesson, Exercise 1.5.

tutte = nx.tutte_graph()

layout = nx.spring_layout(tutte, seed=1)

nx.draw(tutte, layout,

 with_labels=True)

show()

PYTHON

The node representing the protein has a degree of 4 and has a degree of 2.
Furthermore the degree in directed graphs (or digraphs) can be split into the in degree which counts the number of edges pointing into the
node and out degree which counts the number of edges emanating from the node. In the graph generated for Exercise 1.5, the node with
index 0 has an out degree of 3, the node with index 0 has an out degree of 3, the node with index 3 has an in degree of 3, and the node with
index 1 has a total degree of 4, with an out degree of 2 and an in degree of 2.

adk era

from numpy import array

matrixFromArray = array([[0, 1, 0, 0],

 [0, 1, 0, 1],

 [1, 0, 1, 1],

 [1, 0, 1, 0]])

my_graph = nx.from_numpy_matrix(matrixFromArray, create_using=nx.DiGraph)

my_graphLayout = nx.spring_layout(my_graph, seed=11)

nx.draw(my_graph, my_graphLayout,

 node_size=1000,

 arrowsize=20,

 with_labels=True

)

show()

PYTHON

As we discussed in the previous lesson, an edge is set up in a network matrix in the direction (from) row (to) column. Consider the
following network matrix.

The first column tells us which edges reach the first node (node 0) from another node. Adding the numbers up we find an in degree of 3 for
node 0. If we look at the first row we can see that there are two edges originating from node 0, giving an out degree of 2.

Simple as it is, one would nevertheless like to get it done by the computer rather than by hand. In NetworkX there are specific functions to
calculate graph qualities such as node degree. To turn the array into a directed graph and get the degree of all nodes in a network
described by an adjacency matrix we can use the following code. After the matrix is set up by hand, it is converted into a NetworkX
DiGraph object - so NetworkX will parse the directions of the edges as a directed graph.

→

from numpy import array

mymatrix = array([[0, 1, 1, 0, 0],

 [1, 0, 0, 1, 1],

 [1, 0, 0, 0, 0],

 [0, 0, 0, 0, 1],

 [1, 0, 1, 0, 0]])

print(mymatrix)

PYTHON

[[0 1 1 0 0]

 [1 0 0 1 1]

 [1 0 0 0 0]

 [0 0 0 0 1]

 [1 0 1 0 0]]

OUTPUT

The in degree is calculated, which is the sum over all columns, and the out degree is calculated, which is the sum over all rows.

The output is viewed as a list of nodes with each node followed by the in/out degree. For example, the first node (node 0) has an in degree
of 3 (edges from nodes 1, 2 and 4) and out degree 2 (edges to nodes 1 and 2). If the matrix is symmetric, the in degree and the out degree
arrays will be identical. In this case we simply refer to the degree.

This graph can also be visualised to confirm the in and out degree of each node. We have also added a few new customisation options here
in the graph, which you can find and amend using the NetworkX documentation.

mygraph = nx.from_numpy_matrix(mymatrix, create_using=nx.DiGraph)

mygraph.in_degree

PYTHON

InDegreeView({0: 3, 1: 1, 2: 2, 3: 1, 4: 2})

OUTPUT

mygraph.out_degree

PYTHON

OutDegreeView({0: 2, 1: 3, 2: 1, 3: 1, 4: 2})

OUTPUT

mygraphLayout = nx.spectral_layout(mygraph)

mygraphLabels = {

 0: 'Node 0',

 1: 'Node 1',

 2: 'Node 2',

 3: 'Node 3',

 4: 'Node 4',

}

nx.draw(mygraph, mygraphLayout,

 labels = mygraphLabels,

 node_color = 'lavender',

 node_size = 2000,

 arrowsize=25,

 arrowstyle='->')

show()

PYTHON

1. Using a random seed of 100, set up a matrix randomly distributed integers 0 and 1.

2. Turn this matrix into a NetworkX DiGraph object.

3. Calculate the in and out degrees for this graph.

DO IT YOURSELF

15 × 15

Solution

Solution

nodes = 15

seed(100)

rm_15 = randint(0, 2, size=(nodes, nodes))

print(rm_15)

PYTHON

[[0 0 1 1 1 1 0 0 0 0 0 1 0 0 0]

 [0 1 0 0 1 0 1 0 0 0 1 1 1 0 0]

 [1 0 0 1 1 1 1 1 0 0 1 1 1 1 1]

 [1 1 1 0 1 1 1 0 0 1 1 0 1 0 1]

 [1 1 0 0 1 0 0 1 1 1 0 0 0 0 0]

 [0 1 0 1 0 1 0 0 1 1 0 0 0 1 1]

 [1 1 0 0 1 1 0 0 1 0 1 0 1 0 1]

 [0 1 0 1 1 0 0 1 0 1 1 0 0 0 0]

 [0 0 1 0 1 1 0 1 0 0 0 0 0 0 1]

 [0 1 1 0 0 0 0 1 1 1 1 0 0 1 1]

 [0 0 1 0 0 0 0 1 1 0 1 0 1 0 1]

 [0 1 1 1 1 1 1 1 1 0 0 0 0 1 0]

 [1 0 1 0 0 0 1 0 0 0 1 0 1 1 0]

 [0 1 1 1 0 1 0 0 0 0 0 1 1 0 0]

 [1 0 0 0 1 0 1 0 1 1 0 0 0 1 0]]

OUTPUT

rm_15_Graph = nx.from_numpy_matrix(rm_15, create_using=nx.DiGraph)

PYTHON

Solution

Printing in-degrees

print('Index', ' In Degree')

for ind, deg in rm_15_Graph.in_degree:

 print(' ', ind, ' ', deg)

PYTHON

Index In Degree

 0 6

 1 9

 2 8

 3 6

 4 10

 5 8

 6 6

 7 7

 8 7

 9 6

 10 8

 11 4

 12 7

 13 6

 14 7

OUTPUT

Printing out-degrees

print('Index', ' Out Degree')

for ind, deg in rm_15_Graph.out_degree:

 print(' ', ind, ' ', deg)

PYTHON

Degree distribution
It is straightforward to look at the degrees of a network with only a few nodes. However, for large networks with many nodes, the degree
will be an array with as many numbers as there are nodes. This requires a more convenient way to summarise this information. An often-
used solution is to look at the degree distribution.

The degree distribution is normally presented as a histogram showing how many times a given degree was found in that network.

As an example, for a random matrix:

The degree distribution can be plotted using NetworkX and matplotlib, here plotted simply with the hist plot.

Index Out Degree

 0 5

 1 6

 2 11

 3 10

 4 6

 5 7

 6 8

 7 6

 8 5

 9 8

 10 6

 11 9

 12 6

 13 6

 14 6

OUTPUT

10 × 10

seed(4)

rm_mat = randint(0, 2, size=(10, 10))

rm_net = nx.from_numpy_matrix(rm_mat)

PYTHON

For a more complex example, we can generate a network with 100 nodes and display its degree distribution (code taken from the
NetworkX documentation).

xticks, xticklabels as to integers

degs = dict(rm_net.degree()).values()

fig, ax = subplots()

ax.hist(degs, bins=10);

ax.set_title("Degree Distribution", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16);

ax.set_xticks([d for d in degs])

ax.set_xticklabels(degs)

show()

PYTHON

nodes = 100

probab = 0.02

G = nx.gnp_random_graph(nodes, probab, seed=1)

PYTHON

https://networkx.org/documentation/networkx-2.3/auto_examples/drawing/plot_degree_histogram.html
https://networkx.org/documentation/networkx-2.3/auto_examples/drawing/plot_degree_histogram.html

from matplotlib.pyplot import axes, axis, title

import collections

degree_sequence = sorted([d for n, d in G.degree()], reverse=True) # degree sequence

degreeCount = collections.Counter(degree_sequence)

deg, cnt = zip(*degreeCount.items())

fig, ax = subplots()

ax.bar(deg, cnt, width=0.80, color="b")

title("Degree Distribution", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16)

ax.set_xticks([d for d in deg])

ax.set_xticklabels(deg);

draw graph in inset

axes([0.4, 0.4, 0.5, 0.5])

G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])

pos = nx.spring_layout(G, seed=2)

axis("off")

nx.draw_networkx_nodes(G, pos, node_size=30, node_color='r')

nx.draw_networkx_edges(G, pos);

show()

PYTHON

<networkx.classes.graph.Graph object at 0x7f1fdd386080>

(0.0, 1.0, 0.0, 1.0)

OUTPUT

This example plots the degree distribution, showing, for example, that 11 nodes in this network have no edges. You can verify that from the
overlaid graph (isolated red dots).

Note how the degree with highest probability (2) reflects the choice of edge probability of 2%.

1. Change the number of nodes to 1000 and check the maximum of the degree distribution. How does it depend on the number of
nodes?

2. The second argument in the generation of the graph gives the probability of edge creation. How do both the appearance of the
network and the degree distribution change?

DO IT YOURSELF

Solution

degree_max = probab / nodes

nodes = 1000

probab = 0.02

G = nx.gnp_random_graph(nodes, probab, seed=1)

degree_sequence = sorted([d for n, d in G.degree()], reverse=True) # degree sequence

degreeCount = collections.Counter(degree_sequence)

deg, cnt = zip(*degreeCount.items())

fig, ax = subplots()

ax.bar(deg, cnt, width=0.80, color="b")

title("Degree Histogram", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16)

ax.set_xticks([d for d in deg])

ax.set_xticklabels(deg);

draw graph in inset

axes([0.4, 0.4, 0.5, 0.5])

G.subgraph(sorted(nx.connected_components(G), key=len, reverse=True)[0])

pos = nx.spring_layout(G, seed=2)

axis("off")

nx.draw_networkx_nodes(G, pos, node_size=30, node_color='r')

nx.draw_networkx_edges(G, pos);

show()

PYTHON

<networkx.classes.graph.Graph object at 0x7f1fdd7a33d0>

(0.0, 1.0, 0.0, 1.0)

OUTPUT

Solution

The edge probability determines how connected a graph is. The higher the probability, the more
connected. With a probability of 1, a fully connected graph is created. The most frequenc degree is
given by the above formula.

Other Graph Properties

Clustering coefficient
As an example of a more complex quantitative measure, we take the clustering coefficient. We will look at its formula and discuss extreme
cases to understand what useful information the measure is supposed to convey. We then practice the use of creating test matrices and do
calculations of clustering coefficients of the corresponding networks.

##Definition

The clustering coefficient is defined by the formula:

The clustering coefficient, here denoted by , is a number that is calculated for a single node, . For the calculation one needs to know the
degree of the node, . The degree represents the number of direct connections of the node. Nodes connected by an edge are referred to as
nearest neighbours, or simply neighbours. Therefore, the degree is also equal to the number of neighbours. Finally, is the number of edges
(connections) between the neighbours of .

The formula is derived as the number of edges between the neighbours divided by the maximally possible number of connections. The

maximal number of possible connections of neighbours is . There are elements but if we leave out self-connections it becomes

. As each edge is included twice (forward and backward) division by 2 gives the number of undirected connections.

This yields some important properties: if there is no connection between any of the neighbours, then and . If all neighbours are

maximally connected (each node connected to every other node), then and . The clustering coefficient therefore tells us

the extent to which neighbours of a node are connected among themselves. This definition is valid for undirected networks with no self-
connections.

We can use random test graphs, as we made earlier, to explore clustering coefficients in NetworkX. Here we’ll make a 10 by 10 random
graph, setting a seed so it’s reproducible.

To avoid any self-connections, we put the diagonal of the matrix equal to zero.

CALLOUT

=Cu
2e

k(k−1)

Cu u

k

e

u

k
k(k−1)

2 k × k

k × (k − 1)

e = 0 = 0Cu

e =
k(k−1)

2 = 1Cu

from numpy import fill_diagonal

seed_number = 4

nodes = 10

seed(seed_number)

rm_graph = randint(0, 2, size=(nodes, nodes))

fill_diagonal(rm_graph, 0)

myRandom = nx.from_numpy_matrix(rm_graph)

nx.draw(myRandom, node_color='y', with_labels=True)

show()

PYTHON

We can now use NetworkX to learn more about this graph. To print a list of the clustering coefficient for each node (calculated with the
above formula), we use the function .

With slightly nicer formatting:

clustering

print(nx.clustering(myRandom))

PYTHON

{0: 0.5714285714285714, 1: 0.5238095238095238, 2: 0.8, 3: 0.6666666666666666, 4: 0.8, 5: 0.6, 6: 0.809523809

OUTPUT

for ind, cc in dict(nx.clustering(myRandom)).items():

 print(ind, ' ', cc)

PYTHON

To extract the clustering coefficients from the result as a Python list:

You can also obtain the average clustering coefficient across your graph directly from NetworkX:

The number shows that in this graph there is a comparatively high (more than 50%) probability of the neighbours of a node to be connected
among themselves.

Path length
Simply put, the path length refers to the distance between two nodes in a graph, calculated as the number of edges to get from one to the
other. More specific information about a graph can be found by measures that build on the path length, such as the shortest path length,
average shortest path length, and the shortest path length from node to all reachable nodes.

For illustration, here is how we can find out the shortest path of our graph from node 0 to node 1. The output is the sequence of
nodes along this shortest path.

0 0.5714285714285714

1 0.5238095238095238

2 0.8

3 0.6666666666666666

4 0.8

5 0.6

6 0.8095238095238095

7 0.7142857142857143

8 0.6071428571428571

9 0.8095238095238095

OUTPUT

from numpy import around

clustcoeffs = list(dict(nx.clustering(myRandom)).values())

print(around(clustcoeffs, 2))

PYTHON

[0.57 0.52 0.8 0.67 0.8 0.6 0.81 0.71 0.61 0.81]

OUTPUT

print(nx.average_clustering(myRandom))

PYTHON

0.6902380952380953

OUTPUT

myRandom

print(nx.shortest_path(myRandom, source=0, target=1))

PYTHON

The shortest path from node 0 to node 1 is via node with index 2. This shows that the shortest path between these two nodes only passes
through one other node. There may be other paths of the same length, but none which are shorter. If we want to know all possible shortest
paths between a pair of nodes, we can do that too.

There are six possibilities to get from node 0 to node 1 via one intermediate node.

As a single summary quantity of a network, we can find the average shortest path length:

1. Using the matrix you created in Exercise 2.3, calculate the average shortest path length.

2. Using the same matrix, print the shortest path length between nodes 2 and 8.

[0, 2, 1]

OUTPUT

my_shortest_paths = nx.all_shortest_paths(myRandom, source=0, target=1)

for path in my_shortest_paths:

 print(path)

PYTHON

[0, 2, 1]

[0, 3, 1]

[0, 4, 1]

[0, 6, 1]

[0, 9, 1]

[0, 5, 1]

OUTPUT

print(round(nx.average_shortest_path_length(myRandom), 2))

PYTHON

1.29

OUTPUT

DO IT YOURSELF

15 × 15

Solution

Solution

Centrality
Centrality can be used to determine the most important node or nodes in a graph. In a network such as a protein-protein interaction
network, this would be the protein which interacts with most other proteins in the system. The centrality of each node in a network is
calculated as the fraction of nodes in the graph with which is connects.

print(round(nx.average_shortest_path_length(rm_15_Graph), 2))

PYTHON

1.54

OUTPUT

my_shortest_paths = nx.all_shortest_paths(rm_15_Graph, source=2, target=8)

for path in my_shortest_paths:

 print(path)

PYTHON

[2, 4, 8]

[2, 5, 8]

[2, 6, 8]

[2, 10, 8]

[2, 11, 8]

[2, 14, 8]

OUTPUT

my_centralities = nx.degree_centrality(myRandom)

for index, centr in dict(my_centralities).items():

 print(index, ' ', round(centr, 2))

PYTHON

This produces a dictionary of nodes followed by the centrality value. In this graph, node 8 is the most ‘important’ node (according to this
definition).

Analysing a biological network
Caenorhabditis elegans (C. elegans) is a nematode used as model organism to study developmental biology, and specifically neuronal
development. It is one of the simplest organisms with a nervous system, which makes it particularly suited for this research. The majority of
C. elegans individuals are hermaphrodites. The developmental trajectory of each somatic cell (in hermaphrodites 959, in males 1031) has
been identified, and is generally consistent between worms. The complete connectome (neuronal map) has been published, originally by
White, Southgate, Thomson, and Brenner in 1986, and continues to be researched. Here, we take nodes to represent neurons and edges to
represent synapses.

Getting a network matrix from Dynamic Connectome lab
In this final section we want to benefit from network information that is stored in a freely available database. There are a number of
databases that include information about interactions. In the context of biochemical reaction networks, two prominent examples are the
(KEGG database) and the (Reactome database). In the previous lesson, we have used an example from the STRING database which
contained data about protein-protein interactions (PPI). Other examples are the BioGrid Database of Protein, Genetic and Chemical
Interactions and the IntAct Molecular Interaction Database.

Some researchers also make their data freely available upon publication. In this section we are going to use some simplified data from the
Dynamic Connectome lab on the neuronal networks of C. elegans. For simplicity, these data have been edited such that only the first 50 of
the 131 neurons are included. The Python Pandas library is used to import this data. First, we import the adjacency matrix showing how
these neurons connect to each other, and a file containing the name of each neuron.

Then, we convert the adjacency matrix to the Numpy format, and the labels into a dictionary. We then save the labels (each neuron has a
name!) in the NetworkX node label format, and convert the adjacency matrix into the NetworkX format. Finally, we give the graph the layout

, and draw it.

0 0.78

1 0.78

2 0.67

3 0.44

4 0.67

5 0.56

6 0.78

7 0.78

8 0.89

9 0.78

OUTPUT

random

http://www.genome.jp/kegg/pathway.html/
http://www.reactome.org/
https://string-db.org/
https://thebiogrid.org/
https://thebiogrid.org/
https://www.ebi.ac.uk/legacy-intact/
https://www.dynamic-connectome.org/

We can examine this network similar to the way we did for our earlier, smaller networks.

For instance, we can confirm the (reduced) number of nodes.

from pandas import read_csv

neurons = read_csv('data/celegans131matrix_50.csv', header = None, dtype = "float64")

neuronNames = read_csv('data/celegans131labels_50.csv', header = None)

neurons = neurons.to_numpy()

neuronNames = neuronNames.to_dict()

neuronLabels = neuronNames[0]

neuronGraph = nx.from_numpy_matrix(neurons)

neuronLayout = nx.random_layout(neuronGraph)

nx.draw(neuronGraph, neuronLayout,

 node_size=1500,

 node_color='turquoise',

 labels = neuronLabels

)

PYTHON

neuronGraph.number_of_nodes()

PYTHON

Using the techniques we introduced above, we can interrogate various aspects of this real-world network, such as finding the node with the
greatest centrality, assess the average path length, and find out the clustering coefficients.

Exercises

1. Compute the number of edges in the above C. elegans neuron network.

2. Compute the average clustering coefficient across this network.

3. Calculate the centrality of each node.

4. Find the average shortest path length.

5. Find the shortest path length between neurons 4 and 44.

6. Plot the degree distribution of the network with inserted network graph.

Solution

Q1

50

OUTPUT

ASSIGNMENT

print('Number of Edges')

print(neuronGraph.number_of_edges())

PYTHON

Number of Edges

186

OUTPUT

Solution

Solution

Solution

print('Clustering Coefficients')

print(nx.average_clustering(neuronGraph))

PYTHON

Clustering Coefficients

0.3174194694194694

OUTPUT

print('Degree Centrality')

print(nx.degree_centrality(neuronGraph))

PYTHON

Degree Centrality

{0: 0.08163265306122448, 1: 0.14285714285714285, 2: 0.26530612244897955, 3: 0.24489795918367346, 4: 0.06

OUTPUT

print('Average shortest path length')

print(nx.average_shortest_path_length(neuronGraph))

PYTHON

Average shortest path length

2.3518367346938778

OUTPUT

Solution

print('Shortest path length between N4 and N44')

print(nx.shortest_path_length(neuronGraph, source=4, target=44))

PYTHON

Shortest path length between N4 and N44

3

OUTPUT

Solution

degree_sequence = sorted([d for n, d in neuronGraph.degree()], reverse=True) # degree sequence

degreeCount = collections.Counter(degree_sequence)

deg, cnt = zip(*degreeCount.items())

fig, ax = subplots()

ax.bar(deg, cnt, width=0.80, color="b")

title("Degree Distribution", fontsize=20)

ax.set_ylabel("Count", fontsize=16)

ax.set_xlabel("Degree", fontsize=16)

ax.set_xticks([d for d in deg])

ax.set_xticklabels(deg);

draw graph in inset

axes([0.4, 0.4, 0.5, 0.5])

neuronGraph.subgraph(sorted(nx.connected_components(neuronGraph), key=len, reverse=True)[0]);

pos = nx.spring_layout(neuronGraph, seed=2)

axis("off")

nx.draw_networkx_nodes(neuronGraph, pos, node_size=30, node_color='r');

nx.draw_networkx_edges(neuronGraph, pos);

show()

PYTHON

(0.0, 1.0, 0.0, 1.0)

OUTPUT

The function randint creates matrices with randomly assigned integers which are represented as edges.

NetworkX can produce interesting graphs like: Petersen, lobster and caterpillar graphs.

In a symmetric matrix, the in degree and the out degree arrays are identical.

Large networks can be quantified using e.g. the degree distribution.

Some of the key graph properties include the clustering coefficient, path length, and centrality.

Content from Networks - Applications

Last updated on 2024-05-23 | Edit this page

Download Chapter PDF

Download Chapter notebook (ipynb)

Mandatory Lesson Feedback Survey

KEY POINTS

OVERVIEW

http://127.0.0.1:4649/03-networks_3.html
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/03-networks_3.Rmd
https://github.com/LearnToDiscover/Networks.git/edit/main/episodes/03-networks_3.Rmd
http://127.0.0.1:4649/03-networks_3.pdf
http://127.0.0.1:4649/03-networks_3.ipynb
https://docs.google.com/forms/d/e/1FAIpQLSdr0capF7jloJhPH3Pki1B3LZoKOG16poOpuVJ7SL2LkwLHQA/viewform?pli=1

Networks - Part 1

Networks - Part 2

Importing data into NetworkX
In the previous lessons we have looked at the basics of NetworkX, created some networks, analysed various network properties, and
practised these techniques with the pre-prepared C. elegans dataset. If you want to use NetworkX with data of your own, you’ll need to
import your data in a compatible way. Specifically, you need to be able to import data from different original data formats.

Questions

What ways are there to import data into NetworkX?

What are the common file import error?

How to troubleshoot the import errors?

Objectives

Reviewing data import

Understanding troubleshooting of common errors in data import

Handling a bipartite network

Applying network concepts to real-world datasets

PREREQUISITES

import networkx as nx

from pandas import read_csv

from numpy import mean, fill_diagonal

from numpy.random import randint

from matplotlib.pyplot import subplots, show

PYTHON

http://127.0.0.1:4649/01-networks_1.html
http://127.0.0.1:4649/02-networks_2.html

CSV Format
.csv indicates a very common file format, comma separated values. We used it in the previous lesson to import the C. elegans neuronal
network.

The network data ‘celegans131matrix_50.csv’ is simply a large adjacency matrix of 0s and 1s, with no further information. The
‘celegans131labels_50.csv’ file contains the list of neuron names, which we used to label the nodes. We’ll have a look in more detail at how
this import works. We use Pandas functions as a simple way to import a CSV file. (There are, of course, other ways.)

Here is the import of the data for the first 50 neurons.

We import the CSV network file as before. We specify with a keyword argument that there is no header, otherwise the first line in the file
will be assumed to be a header and not parsed (handled) in the same way as the rest of the data. We also specify that the adjacency
matrix is of data type int. (This does not necessarily have to be the case, see the Microbiome network below.) We then convert the
neurons dataframe to a Numpy array. The neuron_Names can be imported in a similar way. They will need to be converted from a
dataframe to a dictionary:

Dictionaries associate keys with values. You may remember we previously created a dictionary to assign labels to nodes. Here we convert
the neuron_Names dataframe into a dictionary: the neuron (node) indices are the keys and the corresponding neuron (node) names are the
values. As the function to_dict wraps the dictionary within a dictionary, we obtain the plain labels dictionary by referring to index ‘0’.

Now we can create a graph, specify a layout, and plot the network.

neurons=read_csv('data/celegans131matrix_50.csv', header=None, dtype = "int")

neurons=neurons.to_numpy()

print(len(neurons))

PYTHON

50

OUTPUT

neuron_Names = read_csv('data/celegans131labels_50.csv', header=None)

neuronNames = neuron_Names.to_dict()

neuronLabels = neuronNames[0]

print(neuronLabels)

PYTHON

{0: 'ADFL', 1: 'ADFR', 2: 'ADLL', 3: 'ADLR', 4: 'AFDL', 5: 'AFDR', 6: 'AIAL', 7: 'AIAR', 8: 'AIBR', 9: 'AINL

OUTPUT

https://en.wikipedia.org/wiki/Comma-separated_values

In this particular case, we also have other metadata that can be used for visualisation and analysis. In our case, we have the file
‘celegans131positions_50.csv’ - which contains information on how the nodes relate to each other in 2-D space. We can include this
information to replace the layout.

neuronGraph = nx.from_numpy_matrix(neurons)

neuronLayout = nx.random_layout(neuronGraph, seed=123)

nx.draw_networkx(neuronGraph, neuronLayout,

 node_size=1000,

 labels = neuronLabels)

show()

PYTHON

neuronPos = read_csv('data/celegans131positions_50.csv', header=None)

neuronPositions = neuronPos.values

nx.draw(neuronGraph, neuronPositions,

 node_size=1000,

 labels = neuronLabels)

show()

PYTHON

The two BAG nodes to the right of the display are the (right and left) sensory neurons used to monitor oxygen and carbon dioxide.

Find the node indices of the sensory neurons named ‘BAGL’ and ‘BAGR’.

Solution

Networks Repository: List of Edges
Network files in the Network Repository are sourced from publications and provided in the ‘.edges’ format. These are plain text files. Let’s
have a look at the network of a mouse visual cortex. You can find this at MOUSE-VISUAL-CORTEX-1. You can either download the zip file

DO IT YOURSELF

for ind, name in enumerate(neuronLabels.values()):

 if 'BAG' in name:

 print(ind, neuronLabels[ind])

PYTHON

47 BAGL

48 BAGR

OUTPUT

https://www.wormatlas.org/neurons/Individual%20Neurons/BAGframeset.html
http://networkrepository.com/index.php
http://networkrepository.com/bn-mouse-visual-cortex-1.php

from the database or use the file provided for this Lesson.

Place the file ‘bn-mouse_visual-cortex_1.edges’ in your working directory. It can be helpful to first open it in any text-editor to see what the
data look like. In this case, it is a list of two numbers per row, separated by a space. This is the list of (directed) edges. The first number
indicating ‘from’, the second ‘to’. Nodes are not given explicitly but will be inferred from the indices.

Being a list of edges, we can import it into NetworkX as an edgelist, specifying that the nodes are given as integers. The result is a
standard graph object which we can plot using draw.

To interpret the network, you can check it against the source, MOUSE-VISUAL-CORTEX-1.

MouseCortex = nx.read_edgelist("data/bn-mouse_visual-cortex_1.edges", nodetype=int)

MouseCortexLayout = nx.random_layout(MouseCortex, seed=111)

nx.draw(MouseCortex, MouseCortexLayout,

 node_size=1000,

 node_color='r',

 with_labels=True)

show()

PYTHON

http://networkrepository.com/bn-mouse-visual-cortex-1.php

Network Repository provides some summary data on all their networks. Obtain the (i) number of nodes, (ii) number of edges, and
(iii) average clustering coefficient and compare it to the data in their network summary.

Solution

JSON Format
JSON (JavaScript Object Notation) is an open standard file format which is language independent and widely used. Here is an example
code to import and display the network that contains co-occurances of characters in Victor Hugo’s novel ‘Les Misérables’.

DO IT YOURSELF

print('Number of nodes:', len(MouseCortex))

print('')

print('Number of edges:', len(MouseCortex.edges))

print('')

print('Average clustering coefficient:', mean(list(nx.clustering(MouseCortex).values())))

PYTHON

Number of nodes: 29

Number of edges: 44

Average clustering coefficient: 0.04942528735632184

OUTPUT

import json

with open('data/miserables.json', 'r') as myfile:

 data=myfile.read()

miserables = json.loads(data)

miserablesNetwork = nx.json_graph.node_link_graph(miserables)

miserablesNetworkLayout = nx.circular_layout(miserablesNetwork)

fig, ax = subplots(figsize=(12,12))

nx.draw(miserablesNetwork, miserablesNetworkLayout,

 node_size=3000,

 with_labels=True)

fig.tight_layout()

show()

PYTHON

https://networkrepository.com/bn-mouse-visual-cortex-1.php
https://en.wikipedia.org/wiki/JSON
http://konect.cc/networks/moreno_lesmis/

As you can see, the ‘data’ variable contains the character names as node names.

If you are curious, open the file with a text editor and check the entries.

E.g. our file starts like this:

{

 "nodes": [

 {"id": "Myriel", "group": 1},

As you can see, the style with curly brackets and colons immediately suggests the use of associative arrays (dictionary) once the data are
within Python. The function node_link_graph provides an interface to handle the data as a NetworkX graph.

There are many other files formats that contain network data. For a list of NetworkX functions that allow import from and export to other file
formats, see Reading and writing graphs.

NetworkX troubleshooting
There are many errors that may occur in the context of dealing with network data. We exemplify some common problems, to help find out
how to diagnose and solve them.

FileNotFoundError
Here we try to import a CSV file which contains an adjacency matrix. We have checked that the file is present in the working directory.

What has gone wrong, and what is the solution?

Solution

You’ll see this error if something has gone wrong in the way you’ve instructed Python to find your file. This may be that you’ve mis-
typed the file name, or the file isn’t in your working directory. Here, the file is present in the working directory, but there’s a typo in
the file name.

KeyError
Here we generate a random adjacency matrix, specify how it should be plotted, and try to visualise it.

neurons = read_csv('data/celegans131mtrix_50.csv', header=None, dtype="float64")

PYTHON

FileNotFoundError: [Errno 2] No such file or directory: 'data/celegans131mtrix_50.csv'

OUTPUT

DO IT YOURSELF

neurons = read_csv('data/celegans131matrix_50.csv', header=None, dtype='int')

PYTHON

http://localhost:8888/lab/tree/Dropbox/Lessons_NetworkX

rm = randint(0, 2, size=(5, 5))

thisgraph = nx.from_numpy_matrix(rm)

thisgraphLayout = nx.spiral_layout(thisgraph)

thisgraphLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

 4: 'E',

 5: 'F',

}

nx.draw(thisgraph, thisgraphLayout,

 labels=thisgraphLabels)

show()

PYTHON

KeyError: 5

OUTPUT

Why does the call of draw throw an error, and what is the solution?

DO IT YOURSELF

Solution

If you look at the error message, it first flags 5: ‘F’,, and ends with an error about labels. We’ve included too many node labels: 6
labels for five nodes. This is easily corrected by taking one label out.

rm = randint(0, 2, size=(5, 5))

thisgraph = nx.from_numpy_matrix(rm)

thisgraphLayout = nx.spiral_layout(thisgraph)

thisgraphLabels = {

 0: 'A',

 1: 'B',

 2: 'C',

 3: 'D',

 4: 'E',

}

nx.draw(thisgraph, thisgraphLayout,

 node_size=1000,

 node_color='tomato',

 labels=thisgraphLabels)

show()

PYTHON

Graph is not bipartite
Here we generate a bipartite graph and try to plot it.

thisBipartite = nx.Graph()

Add nodes with the node attribute "bipartite"

thisBipartite.add_nodes_from(['a', 'b', 'c', 'd', 'e', 'f'], bipartite=0)

thisBipartite.add_nodes_from(['m', 'n', 'o', 'p', 'q', 'r'], bipartite=1)

Add edges only between nodes of opposite node sets

thisBipartite.add_edges_from([('a', 'm'), ('a', 'n'),

 ('b', 'n'), ('b', 'o'),

 ('c', 'o'), ('d', 'm'),

 ('a', 'p'), ('a', 'd'),

 ('f', 'p'), ('d', 'r'),

 ('a', 'q'), ('e', 'n')])

PYTHON

nx.is_connected(thisBipartite)

PYTHON

True

OUTPUT

basegroup = nx.bipartite.sets(thisBipartite)[0]

bipartiteLayout = nx.bipartite_layout(thisBipartite, basegroup)

nx.draw(thisBipartite, bipartiteLayout,

 node_size=2000,

 with_labels=True)

show()

PYTHON

networkx.exception.NetworkXError: Graph is not bipartite.

NameError: name 'basegroup' is not defined

NameError: name 'bipartiteLayout' is not defined

OUTPUT

Why did this happen, what check can you do to avoid the problem, and how do you debug it?

DO IT YOURSELF

Solution

In this instance, the error message is very clear: you can’t plot a graph with a bipartite layout if the graph isn’t bipartite. This would
have also been evident if I hadn’t just checked that the graph was connected, but also that it was bipartite.

There is one edge connecting two nodes within one group. If we either remove that edge, or change one of the nodes to the other
group, it will be bipartite.

nx.bipartite.is_bipartite(thisBipartite)

PYTHON

False

OUTPUT

thisBipartite = nx.Graph()

Add nodes with the node attribute "bipartite"

thisBipartite.add_nodes_from(['a', 'b', 'c', 'd', 'e', 'f'], bipartite=0)

thisBipartite.add_nodes_from(['m', 'n', 'o', 'p', 'q', 'r'], bipartite=1)

Add edges only between nodes of opposite node sets

thisBipartite.add_edges_from([('a', 'm'), ('a', 'n'),

 ('b', 'n'), ('b', 'o'),

 ('c', 'o'), ('d', 'm'),

 ('a', 'p'), ('a', 'n'),

 ('f', 'p'), ('d', 'r'),

 ('a', 'q'), ('e', 'n')])

PYTHON

nx.bipartite.is_bipartite(thisBipartite)

PYTHON

True

OUTPUT

basegroup = nx.bipartite.sets(thisBipartite)[0]

bipartiteLayout = nx.bipartite_layout(thisBipartite, basegroup)

fig = nx.draw(thisBipartite, bipartiteLayout,

 node_size=2000,

 node_color='tomato',

 node_shape='h',

 with_labels=True)

show()

PYTHON

Example: Full C. elegans Neural Network
In the final part, we look at two publicly available networks that are of biomedical interest.

In this first example we return to data about the neuronal connections in C. elegans. This time we are using the full 277 neuron dataset,
which includes 131 frontal neurons. For the original version of the data, go to the (Dynamic Connectome) website and select the Resources
tab.

The data in the network matrix in the celegans277.zip file contain the connections between the 131 neurons in the frontal
network, and 146 in the remainder or the network. If the connections within each of these groups are severed, and the only remaining edges
are between the two groups, this takes the form of a bipartite graph.

We have made available this modified version of the 277 neuron matrix, with no edges within the 131 or the 146 neuron group, see file
‘celegans277matrix_bipartite.csv’. Note that bipartite networks do not work in NetworkX if any of the nodes are not connected. Also
available for download is a list of neuron labels and spatial positions, files ‘celegans277labels.csv’ and ‘celegans277positions.csv’.

277 × 277

https://www.dynamic-connectome.org/

Here we import the bipartite module from NetworkX, and then import the bipartite 277 neuron adjacency matrix and list of neuron names,
with the same method as previously. Next, we use the bipartite convention in NetworkX to designate which nodes are in the group, and
which are in the group. There are several ways to make a graph bipartite, here this is done by listing the node numbers of the 146
neurons and adding the attribute , and listing the node numbers of the 131 neurons and adding the attribute .

We can confirm that the network is bipartite.

neurons = read_csv('data/celegans277matrix_bipartite.csv', header=None, dtype="int")

neuronNames = read_csv('data/celegans277labels.csv', header=None)

neurons= neurons.to_numpy()

neuronNames= neuronNames.to_dict()

myBipartiteLabels = neuronNames[0]

myBipartite = nx.from_numpy_matrix(neurons)

PYTHON

0
1

bipartit = 0′ e′ bipartit = 1′ e′

myBipartite.add_nodes_from([

 0, 1, 2, 3, 13, 14, 17, 21, 22, 23, 24, 25,

 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 59,

 60, 61, 66, 67, 69, 78, 79, 84, 85, 86, 87, 88,

 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100,

101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112,

125, 126, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142,

143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154,

155, 156, 157, 158, 159, 160, 161, 162, 170, 171, 172, 173,

180, 195, 196, 203, 204, 205, 206, 207, 235, 236, 237, 238,

239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249, 250,

251, 252, 253, 254, 255, 256, 257, 258, 259, 260, 261, 262,

263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274,

275, 276], bipartite=0)

myBipartite.add_nodes_from([

 4, 5, 6, 7, 8, 9, 10, 11, 12, 15, 16,

 18, 19, 20, 37, 38, 39, 40, 41, 42, 43, 44,

 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,

 56, 57, 58, 62, 63, 64, 65, 68, 70, 71, 72,

 73, 74, 75, 76, 77, 80, 81, 82, 83, 113, 114,

115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 127,

128, 129, 130, 131, 132, 163, 164, 165, 166, 167, 168,

169, 174, 175, 176, 177, 178, 179, 181, 182, 183, 184,

185, 186, 187, 188, 189, 190, 191, 192, 193, 194, 197,

198, 199, 200, 201, 202, 208, 209, 210, 211, 212, 213,

214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224,

225, 226, 227, 228, 229, 230, 231, 232, 233, 234], bipartite=1)

PYTHON

nx.bipartite.is_bipartite(myBipartite)

PYTHON

Next, we continue to use the bipartite convention introduced above to define the two bipartite groups, and set up a custom colouring list by
group.

True

OUTPUT

top = nx.bipartite.sets(myBipartite)[0]

pos = nx.bipartite_layout(myBipartite, top)

color_dictionary = {0:'gold',1:'lavender'}

color_list = [color_dictionary[i[1]] for i in myBipartite.nodes.data('bipartite')]

fig, ax = subplots(figsize=(10, 30))

nx.draw(myBipartite, pos,

 node_size=1200,

 labels=myBipartiteLabels,

 node_color=color_list)

show()

PYTHON

The graph shows in a preliminary way that there are certain preferred connections between the two sets, in this case between the frontal
group and the rest of the neurons.

Draw the bipartite neural network, coloured by group and positioned using the positional information from Dynamic Connectome in
the file ‘celegans277positions.csv’.

DO IT YOURSELF

Solution

The 2D positions are contained in the file ‘celegans277positions.csv’. After the import of the file, they can be extracted into a
variable using values. The positions then need to replace the original layout values (called ‘pos’ above).

neuronPos = read_csv('data/celegans277positions.csv', header=None)

neuronPositions = neuronPos.values

fig, ax = subplots(figsize=(10, 20))

nx.draw(myBipartite, neuronPositions,

 node_size=3000,

 labels=myBipartiteLabels,

 node_color=color_list)

fig.tight_layout()

show()

PYTHON

Example: Microbiome network
Microbiome data can be collected from a wide variety of environments, and is generally considered to be the bacterial, fungal, and viral
components of a given environment. Friedman and Alm (2012) used data from the Human Microbiome Project to calculate pairwise
interaction correlations for each operational taxonomic unit (OTU). They then used Python and NetworkX to analyse and visualise several of
these correlation datasets for each human body site. The challenge here is to extract network information about a graph from bivariate
quantities like the correlation coefficient.

https://doi.org/10.1371/journal.pcbi.1002687
https://www.nature.com/articles/nature11209

As the correlation data are open access, we can access them and derive the network.
Data are imported from text files. In this case, it is not a CSV file. Rather, the data are tab separated. We can adjust for this by specifying
the keyword argument delimiter for tab. As the correlation coefficients are stored as decimal point numbers, we specify the keyword
argument dtype as floating point ‘float64’.

If you check the file, you will see that the first entry is ‘1.0’. This is because all self-correlations are (trivially) equal to one. We replace those
diagonal values with 0 to avoid (nonsensical) self-connections in the network.

gutbact = read_csv('data/Stool_sparse_adj_matrix.txt',

 header=None, delimiter='\t', dtype="float64")

gutbactNames = read_csv('data/Stool_sparse_matrix_names.txt',

 header=None)

gutbact= gutbact.to_numpy()

fill_diagonal(gutbact, 0)

gutbactNames= gutbactNames.to_dict()

gutbactLabels = gutbactNames[0]

PYTHON

gutbactGraph = nx.from_numpy_matrix(gutbact)

gutbactLayout = nx.circular_layout(gutbactGraph)

fig, ax = subplots(figsize=(16,16))

nx.draw(gutbactGraph, gutbactLayout,

 node_size=3000,

 node_color='r',

 labels=gutbactLabels)

show()

PYTHON

This gives us the correlation network from the stool samples, with nodes labelled by the OTU number. However, this doesn’t look much like
the data from the article, partly as there are so many edges. The reason is that any number in the network matrix that is not equal to zero is
interpreted as an edge. Thus, essentially the graph is fully connected.

Functional Networks
In the paper, Friedman and Alm (2012), the edges are taken from the correlation coefficients of the correlation matrix. I.e. they define the
correlation matrix as a network matrix. But the entries of the correlation matrix are not 0s and 1s as we have used so far. Instead they are
real numbers between -1 and 1. What Friedman and Alm did to obtain meaningful edges was to pick a threshold correlation, e.g.
and set any matrix entry with absolute value smaller than the threshold as 0. All other values are left as they are. Because anything non-
zero will be interpreted as an edge, this means that they only plot edges where the correlation coefficient is greater than 0.3 or less than
-0.3. Such networks are referred to as functional networks.

To threshold the correlation matrix in Python, we select matrix values between -0.3 and 0.3, and replace them with 0. Then we convert this
thresholded network matrix to a graph and plot it.

|cc| = 0.3

from numpy import where, logical_and

threshold = 0.3

gutbact_threshold = where(logical_and(gutbact>=-threshold , gutbact<=threshold), 0, gutbact)

PYTHON

gutbactGraph = nx.from_numpy_matrix(gutbact_threshold)

fig, ax = subplots(figsize=(16,16))

nx.draw(gutbactGraph, gutbactLayout,

 node_size=3000,

 node_color='r',

 labels=gutbactLabels)

show()

PYTHON

This network only displays edges where strong correlations were found and this is how Friedman and Alm obtained their graphs. Note that
the network structure now is a function of the chosen threshold. Smaller thresholds yield more edges, higher thresholds fewer edges.
Choosing the right threshold may be difficult and needs further thought.

The creation of networks from functional data opens a wide field of research: any interrelation matrix obtained with whatever metric can be
interpreted as a network matrix and converted into a graph. As an example, see Figure 1 in The Brain as a Complex System: Using
Network Science as a Tool for Understanding the Brain which describes the procedure for brain imaging.

This concludes our set of Lessons on network handling in Python. For practice, try to find a database that touches on topics of your own
interest. As an example, in the context of the human brain, there is a rich database at the Human Connectome Database. Each database
will present its own challenges and obstacles. Nevertheless, it is worth to overcome those to be able to work with the data in Python.
Eventually, all functions and dysfunctions observed in living systems are a consequence of interactions between components.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621511/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3621511/
http://www.humanconnectomeproject.org/data/

.csv is a common file format when importing network data.

JSON is another widely used standard file format which is language independent.

FileNotFoundError, KeyError and Graph is not bipartite are the most common file import errors.

KEY POINTS

